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Preface

Finite Element Analysiswas devel oped as anumerical method of stressanalysis, but now it has been extended
as ageneral method of solution to many complex engineering and physical science problems. Asit involves
lot of calculations, its growth is closely linked with the devel opmentsin computer technology. Now-a-days a
number of finite element analysis packages are available commercially and number of usersisincreasing. A
user without a basic course on finite element analysis may produce dangerous results. Hence now-a-days in
many M.Tech. programmes finite element analysisis a core subject and in undergraduate programmes many
universities offer it as an elective subject. The experience of the author in teaching this course to M.Tech
(Geotechnical Engineering) and M.Tech. (Industrial Structures) students at National Institute of Technology,
Karnataka, Surathkal (formerly, K.R.E.C. Surathkal) and to undergraduate students at SDM College of
Eingineering and Technology, Dharwad inspired him to write this book. This is intended as a text book to
students and as an introductory course to all users of finite element packages.

The author has developed the finite element concept, element properties and stiffness equations in first
nine chapters. In chapter X the various points to be remembered in discritization for producing best resultsis
presented. soparametric concept is devel oped and applications to simple structures like bars, trusses, beams
and rigid frames is explained thoroughly taking small problems for hand calculations. Application of this
method to complex problems like plates, shells and nonlinear analysis is introduced. Finally a list of
commercialy available packages is given and the desirable features of such packagesis presented.

The author hopes that the students and teachers will find it as a useful text book. The suggestions for
improvements are most welcome.

DR S.S. BHAVIKATTI
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1

Introduction

1.1 GENERAL

Thefinite element analysisis anumerical technique. In thismethod all the complexities of the problems, like
varying shape, boundary conditions and loads are maintained as they are but the solutions obtained are
approximate. Because of its diversity and flexibility as an analysis toal, it is receiving much attention in
engineering. The fast improvements in computer hardware technology and slashing of cost of computers
have boosted this method, since the computer is the basic need for the application of this method. A number
of popular brand of finite element analysis packages are now available commercially. Some of the popular
packages are STAAD-PRO, GT-STRUDEL, NASTRAN, NISA and ANSY S. Using these packages one can
analyse several complex structures.

Thefinite element analysis originated as amethod of stressanalysisin the design of aircrafts. It started as
an extension of matrix method of structural analysis. Today this method is used not only for the analysisin
solid mechanics, but even in the analysis of fluid flow, heat transfer, electric and magnetic fields and many
others. Civil engineers use this method extensively for the analysis of beams, space frames, plates, shells,
folded plates, foundations, rock mechanics problems and seepage analysis of fluid through porous media.
Both static and dynamic problems can be handled by finite element analysis. This method is used extensively
for the analysis and design of ships, aircrafts, space crafts, electric motors and heat engines.

1.2 GENERAL DESCRIPTION OF THE METHOD

In engineering problemsthere are some basic unknowns. If they are found, the behaviour of the entire structure
can be predicted. The basic unknowns or the Field variables which are encountered in the engineering
problems are displacementsin solid mechanics, vel ocitiesin fluid mechanics, electric and magnetic potentials
in electrical engineering and temperaturesin heat flow problems.

In a continuum, these unknowns are infinite. The finite element procedure reduces such unknowns to a
finite number by dividing the solution region into small parts called elements and by expressing the unknown
field variablesin termsof assumed approximating functions (Interpolating functions/Shape functions) within
each element. The approximating functions are defined in terms of field variables of specified points called
nodes or nodal points. Thusin the finite element analysis the unknowns are the field variables of the nodal
points. Once these are found the field variables at any point can be found by using interpolation functions.

After selecting elements and nodal unknowns next step in finite element analysisisto assemble element
properties for each element. For example, in solid mechanics, we have to find the force-displacement i.e.
stiffness characteristics of each individual element. Mathematically this relationship is of the form
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[Kle{d}e={F}e

where [K], is element stiffness matrix, {3}, is nodal displacement vector of the element and { F}_ is nodal

force vector. The element of stiffness matrix k”. represent the force in coordinate direction ‘i’ due to a unit
displacement in coordinate direction *j’. Four methods are available for formulating these element properties
viz. direct approach, variational approach, weighted residual approach and energy balance approach. Any
one of these methods can be used for assembling element properties. In solid mechanics variational approach
is commonly employed to assemble stiffness matrix and nodal force vector (consistant loads).

Element properties are used to assemble global properties/structure properties to get system equations
[K] {d} = {F}. Then the boundary conditions areimposed. The solution of these simultaneous equations give
the nodal unknowns. Using these nodal values additional cal culations are made to get the required values e.g.
stresses, strains, moments, etc. in solid mechanics problems.

Thus the various steps involved in the finite element analysis are:

(i) Select suitable field variables and the elements.

(if) Discritise the continua.

(iii) Select interpolation functions.

(iv) Find the element properties.

(v) Assemble element propertiesto get global properties.

(vi) Impose the boundary conditions.
(vii) Solve the system equations to get the nodal unknowns.
(viii) Make the additional calculationsto get the required values.

1.3 A BRIEF EXPLANATION OF FEA FOR
A STRESS ANALYSIS PROBLEM

The stepsinvolved in finite element analysis are clarified by taking the stress analysis of atension strip with
fillets (refer Fig.1.1). In this problem stress concentration isto be studiesin thefillet zone. Since the problem
is having symmetry about both x and y axes, only one quarter of the tension strip may be considered as shown
in Fig.1.2. About the symmetric axes, transverse displacements of all nodes are to be made zero. The various
stepsinvolved in the finite element analysis of this problem are discussed below:

Step 1: Four noded isoparametric element (refer Fig 1.3) is selected for the analysis (However note that 8
noded isoparametric element is ideal for this analysis). The four noded isoparametric element can take
quadrilateral shapeaso asrequired for elements 12, 15, 18, etc. Asthereisno bending of strip, only displacement
continuity isto be ensured but not the slope continuity. Hence displacements of nodesin x and y directionsare
taken as basic unknowns in the problem.

Fillet 3t |

P < S

- — Lo —S b

<« A —> J
< ts =

Fig. 1.1 Typical tension flat
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(a) Element no. 5 (b) Typical element
Fig. 1.3

Step 2: Theportionto be analysedisto bediscretised. Fig. 1.2 showsdiscretised portion. For this 33 elements
have been used. There are 48 nodes. At each node unknowns are x and y components of displacements. Hence
in this problem total unknowns (displacements) to be determined are 48 x 2 = 96.

Step 3: The displacement of any point inside the element is approximated by suitable functions in terms of
the nodal displacements of the element. For the typical element (Fig. 1.3 b), displacements at P are

u= Z N;u = Nau; + Nou, + Ngug + Nyuy

and Vv = Z NiVi = val + N2V2 + N3V3 + N4V4 (12)

The approximating functions N, are called shape functions or interpolation functions. Usualy they are
derived using polynomials. The methods of deriving these functionsfor various elements are discussed in this
text in latter chapters.

Step 4: Now the stiffness characters and consistant loads are to be found for each element. There are four
nodes and at each node degree of freedom is 2. Hence degree of freedom in each elementis4 x 2 = 8. The
relationship between the nodal displacements and nodal forcesis called element stiffness characteristics. It is
of theform

[Klc {0} = {F}e, asexplained earlier.

For the element under consideration, k_ is 8 x 8 matrix and d, and F_ are vectors of 8 values. In solid

mechani cs element stiffness matrix isassembled using variational approachi.e. by minimizing potential energy.
If theload is acting in the body of element or on the surface of element, its equivalent at nodal pointsareto be
found using variational approach, so that right hand side of the above expression is assembled. This process
is called finding consistant loads.
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Step 5: The structure is having 48 x 2 = 96 displacement and load vector components to be determined.
Hence global stiffness equation is of the form

(K] {6} ={F}
%6x9%6 96x1 96 x 1
Each element stiffness matrix isto be placed in the global stiffness matrix appropriately. Thisprocessis
called assembling global stiffness matrix. In this problem force vector F is zero at all nodes except at nodes
45, 46, 47 and 48 in x direction. For the given loading nodal equivalent forces are found and the force vector
F is assembled.

Step 6: In this problem, due to symmetry transverse displacements along AB and BC are zero. The system
equation [K] {d} = {F} is modified to see that the solution for {3} comes out with the above values. This
modification of system equation is called imposing the boundary conditions.

Step 7: The above 96 simultaneous equations are solved using the standard numerical procedureslike Gauss-
elimination or Choleski’s decomposition techniques to get the 96 nodal displacements.

Step 8: Now the interest of the analyst is to study the stresses at various points. In solid mechanics the
relationship between the displacements and stresses are well established. The stresses at various points of
interest may be found by using shape functions and the nodal displacements and then stresses calculated. The
stress concentrations may be studies by comparing the values obtained at various pointsin thefillet zone with
the values at uniform zone, far away from thefillet (which is equal to P/b.t).

1.4 FINITE ELEMENT METHOD VS CLASSICAL METHODS

1. Inclassica methods exact equations are formed and exact solutions are obtained where asin finite
element analysis exact equations are formed but approximate solutions are obtained.

2. Solutions have been obtained for few standard cases by classical methods, where as solutions can
be obtained for all problems by finite element analysis.

3. Whenever the following complexities are faced, classical method makes the drastic assumptions
and looks for the solutions:

(8 Shape
(b) Boundary conditions
(c) Loading

Fig. 1.4 shows such casesin the analysis of slabs (plates).

To get the solution in the above cases, rectangular shapes, same boundary condition along a side
and regular equivalent loads areto be assumed. In FEM no such assumptions are made. The problem
istreated asit is.

4. When material property isnot isotropic, solutionsfor the problemsbecomevery difficultin classical
method. Only few simple cases have been tried successfully by researchers. FEM can handle
structures with anisotropic properties also without any difficulty.

5. If structure consists of more than one material, it is difficult to use classical method, but finite
element can be used without any difficulty.

6. Problems with material and geometric non-linearities can not be handled by classical methods.
Thereisno difficulty in FEM.
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Hence FEM issuperior to the classical methods only for the problemsinvolving anumber of complexities
which cannot be handled by classical methods without making drastic assumptions. For all regular problems,
the solutions by classical methods are the best solutions. Infact, to check the validity of the FEM programs
developed, the FEM solutions are compared with the solutions by classical methods for standard problems.

ELZLZLZLZLZLZL ”

(a) Irregular shaper (b) Irregular boundary condition

L]

(c) Irregular loading

Fig. 1.4

1.5 FEM VS FINITE DIFFERENCE METHOD (FDM)

1. FDM makes pointwise approximation to the governing equationsi.e. it ensures continuity only at
the node points. Continuity along the sides of grid lines are not ensured.

FEM make piecewise approximationi.e. it ensures the continuity at node pointsaswell asalong
the sides of the element.

2. FDM do not give the values at any point except at node points. It do not give any approximating
function to evaluate the basic values (deflections, in case of solid mechanics) using the nodal
values.

FEM can give the values at any point. However the values obtained at points other than nodes
are by using suitable interpolation formul ae.

3. FDM makes stair type approximation to sloping and curved boundaries as shown in Fig. 1.5.

FEM can consider the sloping boundaries exactly. If curved elements are used, even the curved
boundaries can be handled exactly.

4. FDM needs larger number of nodes to get good results while FEM needs fewer nodes.

5. With FDM fairly complicated problems can be handled where as FEM can handle all complicated
problems.
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Fig. 1.5 FDM approximation of shape

1.6 A BRIEF HISTORY OF FEM

Engineers, physicistsand mathemati cians have devel oped finite el ement method independently. 1n 1943 Courant
[1] made an effort to use piecewise continuous functions defined over triangular domain.

After that it took nearly a decade to use this distribution idea. In fifties renewed interest in thisfield was
shown by Polya[2], Hersh [3] and Weinberger [4]. Argyrisand Kelsey [5] introduced the concept of applying
energy principles to the formation of structural analysis problems in 1960. In the same year Clough [6]
introduced the word * Finite Element Method'.

In sixties convergence aspect of the finite element method was pursued more rigorously. One such study
by Melesh[7] led to the formulation of the finite element method based on the principles of minimum potential
energy. Soon after that de VVeubeke [8] introduced equilibrium elements based on the principles of minimum
potential energy, Pion [9] introduced the concept of hybrid element using the duel principle of minimum
potential energy and minimum complementary energy.

In Late 1960's and 1970’s, considerable progress was made in the field of finite element analysis. The
improvementsin the speed and memory capacity of computerslargely contributed to the progress and success
of thismethod. In thefield of solid mechanicsfrom theinitial attention focused on the elastic analysis of plane
stress and plane strain problems, the method has been successfully extended to the cases of the analysis of
three dimensional problems, stability and vibration problems, non-linear analysis. A number of books
[10 — 20] have appeared and made this field interesting.

1.7 NEED FOR STUDYING FEM

Now, anumber of usersfriendly packages are availablein the market. Hence one may ask the question * What
isthe need to study FEA?.

The above argument is not sound. The finite element knowledge makes a good engineer better whilejust
user without the knowledge of FEA may produce more dangerous results. To usethe FEA packages properly,
the user must know the following points clearly:

1. Which elements are to be used for solving the problem in hand.
2. How to discritise to get good results.
3. How to introduce boundary conditions properly.



4.
5.
6.
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How the element properties are developed and what are their limitations.
How the displays are developed in pre and post processor to understand their limitations.

To understand the difficulties involved in the development of FEA programs and hence the need
for checking the commercially available packages with the results of standard cases.

Unless user has the background of FEA, he may produce worst results and may go with overconfidence.
Hence it is necessary that the users of FEA package should have sound knowledge of FEA.

1.8 WARNING TO FEA PACKAGE USERS

When hand cal culations are made, the designer always gets the feel of the structure and get rough idea about
the expected results. Thisaspect cannot beignored by any designer, whatever bethereliability of the program,
a complex problem may be simplified with drastic assumptions and FEA results obtained. Check whether
expected trend of theresult is obtained. Then avoid drastic assumptions and get more refined resultswith FEA
package. User must remember that structural behaviour is not dictated by the computer programs. Hence the
designer should develop feel of the structure and make use of the programsto get numerical resultswhich are
close to structural behaviour.

1
2.

3.
4.

QUESTIONS

Explain the concept of FEM briefly and outline the procedure.
Discuss the advantages and disadvantages of FEM over
(i) Classical method
(if) Finite difference method.
Clearly point out the situations in which FEM is preferred over other methods.
When there are several FEM packages are available is there need to study this method? Discuss.
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2

Basic Equations in Elasticity

2.1 INTRODUCTION

This chapter summarizes the results from theory of elasticity which are useful in solving the problems in
structural and continuum mechanics by the finite element method.

2.2 STRESSES IN A TYPICAL ELEMENT

In theory of elasticity, usually right hand rule is used for selecting the coordinate system. Fig. 2.1 shows
various orientations of right hand rule of the coordinate systems. Equations derived for any one such orientation
hold good for al other orientations of

z

(b)

() ©)
Fig. 2.1

coordinate system with right hand rule. In this Chapter orientation shown in Fig. 2.1(a) is used for the
explanation. Fig. 2.2 shows atypical three dimensional element of size dx x dy x dz. Face abcd may be called
as negative face of x and the face efgh as the positive face of x since the x value for face abcd isless than that
for the face efgh. Similarly the face aehd is negative face of y and bfgc is positive face of y. Negative and
positive faces of z are dhgc and aefb.

Thedirect stresses o and shearing stresses r acting on the negative faces are shown in the Fig. 2.3 with
suitable subscript. It may be noted that the first subscript of shearing stressisthe plane and the second subscript
is the direction. Thus the Ty, means shearing stress on the plane where x value is constant and y is the
direction.
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Fig. 2.2 Fig. 2.3

In astressed body, the values of stresses change from face to face of an element. Hence on positive face
the various stresses acting are shown in Fig. 2.4 with superscript ‘+'.

All theseforces are listed in table 2.1

Note the sign convention: A stressispositive when it ison positive face in positive direction or on negative
face in negative direction. In other words the stressis + ve when it is as shown in Figs 2.3 and 2.4.

Fig. 2.4
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Table 2.1  Stresses on a typical element

Face Stress on —ve Face Stresses on +ve Face
X o, Oy =0, + 90 dx
Ty Ty =rxy+%dx

Ty Ty =T+ —= dx

y o ay =ay+%dy
Ty Tix :Tw+%dy

Ty Ty, :ryz+ﬁr—yzdy

z o, 0, =0,+—2dz
Ty T :rzx+%dz

Ty Ty :sz+%dz

Note that stress on positive face is equal to the stress on negative face plus rate of change of that stress
multiplied by the distance between the faces.

AZ Z

/ ay ———p

ax

Fig. 2.5
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Let the intensity of body forces acting on the element in X, y, z directions be X, Y and Z respectively as
shown in Fig 2.5. The intensity of body forces are uniform over entire body. Hence the total body force in x,

y, z direction on the element shown are given by

(i) Xdxdydzinx-—direction
(i) Ydxdydziny—direction and
(ili) Zdxdydzinz—direction

2.3 EQUATIONS OF EQUILIBRIUM

Considering all the forces acting, we can write equations of equilibrium for the element.

ZFX:O

oy dydz-o,dydz+ 1y, dxdz -7, dxdz +Tdxdy —T ,dxdy +Xdx dydz =0

. dox dTYX
ie o, + Y dx |dydz—-o,dydz +| T+ Y dy |dx dz - T, dx dz

"'(sz*'d;;xdZ)dydx—szdxdy+dedydz=O

Simplifying and then dividing throughout by dx dy dz, we get

9y , My +0TZX +X =0
ox ady o0z

Similarly F, = 0 and 3F, = 0 equilibrium conditions give,

é’rxy . day . drzy 4V =0
oX & I,

and or,, 01y, . do, +7 =0
17,4 oy 2,

Now, ¥ moment about x-axis = 0 through the centroid of the element gives

T,, dx dzd—2y +TﬂdXdZ%y —[r;y dxdz% +T dxdz%y}=0

or dz dz or dz dz
i T, +——>dy|dxdy — +T,dxdy — —||T, + > dz|dxdy — +T,dxdz— [=0
1.€. [ yz dy dYJ dy 2 yz dy 2 zy o7 dy 2 7y 2
Neglecting the small quantity of higher (4") order and dividing throughout by dx dy dz, we get
Ty, =Ty

Similarly the moment equilibrium conditions about y-axis and z-axis result into
=T

Xz X

..(i)

...(ii)

...(iii)

..(iv)

(V)
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and T=T .. (vi)

Thus the stress vector is

lo|" = [ax 0,0, Ty Ty, TXZ] ..(2.2)
and the equations of equilibrium are
9y, Iy + e +X =0
X oy 2,
or,, N oo, L9y LY =0
ox z
and Mo Ty + 29 +Z =0 ...(2.2)
oX oy oz
and note that
Ty =Ty Ty =Ty and 1,,=T7, ..(2.3)
2.4 STRAINS

Corresponding to the six stress components given in equation 2.1, the state of strain at a point may be divided
into six strain components as shown below:

e} =[ex &y &, vy Vyo Vin .(2.4)

2.5 STRAIN DISPLACEMENT EQUATIONS

Taking displacement componentsin x, y, zdirectionsas u, v and w respectively, therel ationsamong components
of strains and components of displacements are

B RN
£, =— +=||— - —

x 2| ox ) |

- als 65T
e=—+_ |l |+t | 5

o 2|\ay) oy) o)

s (3 (2
g,=—+ || — | +| = | +| =

oz 2|\ oz oz) |
yw=&+@+@9@+&$+@g‘ﬁ

x O X & ox dy ox &
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yyzzﬂ +é/ +@ ﬁ +i/ £+@ ﬂ ...(25)
& oz oy oz o by o
_u v ou X aw
and Ve™% "ox Tox oz o %+dx %V

In equation 2.5, strains are expressed upto the accuracy of second order (quadratic) changes in
displacements. These equations may be simplified to the first (linear) order accuracy only by dropping the
second order changes terms. Then linear strain — displacement relation is given by:

_ou N
EX—& yxy X 0)/
ov ow . ov
- =+ — 26
g—M :ﬂ+@
z_az yXZ ax az

Equations 2.6 are used in small deflection theories and equations 2.5 in large deflection theories.

8

2.6 LINEAR CONSTITUTIVE EQUATIONS

The constitutive law expresses the rel ationship among stresses and strains. In theory of elasticity, usually itis
considered aslinear. In one dimensional stress analysis, the linear constitutive law is stressis proportional to
strain and the constant of proportionality is called Young's modulus. It is very well known as Hooke's law.
Thesimilar relation is expressed among the six components of stressesand strainsandiscalled ‘ Gener alized
Hookes Law”. This may be stated as:

Oy Dy D, Di3 Dy Dis Dy Ex
Oy D,y Dy Diz Dy Dys Dy y
Oz _ D3y D3 Dsz Dy D35 Dsg z
Tyy Disi Dsz Disg Das Duss Das| |Vxy - (2.7)
Ty, Dsi Ds, Ds3 Dss Dss Dsg| [Vyz
Ty D1 De2 Des Des Des Des) (Vi

or in matrix form

{o} =[D]{e},
where D is 6 x 6 matrix of constants of elasticity to be determined by experimental investigations for each
material. As D is symmetric matrix [D”. = Dji], there are 21 material properties for linear elastic Anisotropic
Materials.
Certain materials exhibit symmetry with respect to planes within the body. Such materials are called

Ortho tropic materials. Hence for orthotropic materials, the number of material constants reduce to 9 as
shown below:
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Ox Dy Dp D O 0 0 X
gy D,, Dy O 0 0 y
(o) D 0 0 0 £
2= % ? ..(2.8)
Ty Sym Dy O 0 Yxy
Tyz D55 0 yyz
Ty Des) (Vx
Using the Y oung's Modulii and Poisons ratio terms the above relation may be expressed as:
o o o
£, =X — Yy 2z
X ) Hyx E, Hx E,
o o o
£ == e SR 4 -z
y l'le Ex Ey I"lzy Ez
o (o)
€, Mg ==X ~H,— + = (2.9
z Hyz Ex IJyz Ey , ( )
T T T
—d -y x
yxy = —, yyz = —, y = =
Gy G, ¥ Gy,

Note that there are 12 material properties in equations 2.9. However only nine of these are independent
because the following relations exist

i_Ey Ey_EZ Ez_Ex

My  Hy Hye Hy My Hy
For | sotropic M aterialsthe above set of equationsare further simplified. Anisotropic material istheone
that has same material property in all directions. In other word for isotropic materials,

E=E=Esy E and
My = Hyx = Hyz = Hzy = Hyxe =Hx SY U ..(2.112)

Hence for athree dimensional problem, the strain stress relation for isotropic material is,

...(2.10)

S T 0 o | |9
E E E

&y 1 _E 0 o | |9
E E
1

e, ) 0 0| |o,
_ E

= -4 . ..(2.12)
Y xy 2 Ty
1-pu 0
Vye ST I 1
Ve 2 |1k
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Since G = E and stress— strain relation is
20- )
Oy 1-p H H 0 0 0 €x
1- 0 0 0
o, HoH £,
1-pu 0 0 0
o, E 1-2u 0 0 £,
= m 2 ...(2.13)
Ty 1-2u 0 Yxy
Tyz 2 1- 2“ yyz
Ty, 2 Y xz

In case of two dimensional elasticity, the above relations get further simplified. There are two types of
two dimensional elastic problems, namely plane stress and plane strain problems.

Plane Stress Problems

Thethin plates subject to forcesin their plane only, fall under this category of the problems. Fig. 2.6 showsa
typical plane stress problem. In this, thereis

o i

Fig. 2.6

no force in the z-direction and no variation of any forcesin z-direction. Hence

0,=T,=T,=0
The conditions 7, =1,, =0 give y,, = y,, = 0 and the condition g, = 0 gives,

0,= Uy + pe, +(1 - p)e, =0
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_1f1“ (£X+EY)

If thisis substituted in equation 2.13 the constitutive law reduces to

i.e £,=

Oy 1 u 0 Ey
_E

oy i=——5|H 1 0 | ...(2.14)
1-p 1-p

TXy 00 2 yxy

Plane Strain Problems

A long body subject to significant lateral forces but very little longitudinal forces falls under this category of
problems. Examples of such problems are pipes, long strip footings, retaining walls, gravity dams, tunnels,
etc. (refer Fig. 2.7). In these problems, except for asmall distance at the ends, state of stressisrepresented by
any small longitudinal strip. The displacement in longitudinal direction (z-direction) is zero in typical strip.
Hence the strain components,

(@) (b)

»
»

(d)

Fig. 2.7
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(e)

Fig. 2.7 (contd)

€, Ve=VYy =0
Yxe= Yy, =0 means T, and Ty, are zero.

£,=0 means

GZ (GX+O-y)
g,=——2-pu—2—¥ =0
=g H E
i.e 0,= /J(Gx+ Oy)

Hence equation 2.13 when applied to plane strains problems reduces to

Ox E 1-p H 0 Ex
Oy (=———~"—5~| H4 1-u 0 3 ...(215
YT @+ @ - 2p) 1-2u|]” (215)

Axi-Symmetric Problems

Axi-symmetric structures are those which can be generated by rotating aline or curve about an axis. Cylinders
(refer Fig. 2.8) are the common examples of axisymmetric structures. If such structures are subjected to
axisymmetric loadings like uniform internal or external pressures, uniform self weight or live load uniform
over the surface,

there exist symmetry about any axis. The advantage of symmetry may be made useto simplify theanalysis. In
these problemscylindrical coordinates can be used advantageously. Because of symmetry, the stress components

are independent of the angular (8) coordinate. Hence all derivatives with respect to A vanish i.e. in these
Cases.

V=V9= Ve, = Tg= Ty, =0



Basic Equationsin Elasticity 19

R
VYV Y Y YV Y YV b Yy

ru I

(a) (b)
Fig. 2.8

Hence there are only four nonzero components. The strain displacement relations for these components
are

_ou _u _ow
sr—g, se—F, EZ—E and
au  ow
Yiz= % + rY ...(2.16)
In these cases stress-strain relation is

o, 1-pu H H 0 ;
o, E =m0 g,
0.9 - (1+ IJ) (1_ 2“) 1_ IJ 1_02IJ 89 (217)
TI’Z 2 yI’Z

QUESTIONS

1. Draw atypical three dimensional element and indicate state of stressin their positive senses.
2. Derive the equations of equilibrium in case of athree dimensional stress system.
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3. State and explain generalized Hooke' s law.
4. Give strain displacement relationsin case of athree dimensional elasticity problem upto

(i) accuracy of linear terms only

(if) accuracy of quadratic terms.
5. Explain theterms, ‘ Anisotropic’, ‘ Orthotropic’ and ‘Isotropic’ as applied to material properties.
6. Give constitutive laws for three dimensional problems of

(i) orthotropic materials

(i) isotropic materials.
7. Explaintheterms*Planestress’ and ‘ Planestrain’ problems. Give constitutive lawsfor these cases.
8. Explain the term * Axi-symmetric problems’ and give constitutive law for such problems.
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Matrix Displacement Formulation

3.1 INTRODUCTION

Though mathematicians, physicists and stress analysts worked independently in the field of FEM, it is the
matrix displacement formulation of the stress analysts which lead to fast development of FEM. Infact till the
word FEM became popular, stress analyst worked in thisfield in the name of matrix displacement method. In
matrix displacement method stiffness matrix of an element is assembled by direct approach while in FEM
though direct stiffness matrix may be treated as an approach for assembling element properties (stiffness
matrix as far as stress anaysis is concerned), it is the energy approached which has revolutionized entire
FEM.

Hence in this chapter, a brief explanation of matrix displacement method is presented and solution
techniques for simultaneous equations are discussed briefly.

3.2 MATRIX DISPLACEMENT EQUATIONS

The standard form of matrix displacement equation is,
[k {d} = {F}

where  [K] is stiffness matrix
{d} is displacement vector and

{F} isforce vector in the coordinate directions
The element k”. of stiffness matrix maybe defined as the force at coordinate i due to unit displacement in
coordinate direction j.
The direct method of assembling stiffness matrix for few standard casesis briefly given in thisarticle.

1. Bar Element
Common problems in this category are the bars and columns with varying cross section subjected to axial
forces as shown in Fig. 3.1.

For such bar with crosssection A, Y oung’ sModulus E and length L (Fig. 3.2 (a)) extension/shortening &
isgiven by
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A 4

>
» <

Y
il
T~
v
A
=
o
M —e——— ——pe— —

(b)

Fig. 3.1
A E
L " 2 .
o b P .
L ! 1 o P
< L ;I |1 |
: @ (b)
| [
< | >
I R
i« L g 1
(c)
Fig. 3.2
EA
O P=—9
L

O |f5:l PZETA

By giving unit displacement in coordinate direction 1, the forces devel opment in the coordinate direction
1 and 2 can be found (Fig. 3.2 (b)). Hence from the definition of stiffness matrix,

EA EA
ki, = — and ky; = ——
M1 L ana Kop L

Similarly giving unit displacement in coordinate direction 2 (refer Fig. 3.2 (¢)), we get
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1 -1
Thus, [k]=ETA[_1 J ...(35)

2. Truss Element

Members of the trusses are subjected to axial forcesonly, but their orientation in the plane may be at any angle
to the coordinate directions selected. Figure 3.3 shows atypical case in a plane truss. Figure 3.4 (a) shows a
typical member of thetrusswith Y oung’ sModulusE, cross sectional area A, length L and at angle 9 to x-axis

y

RPAN VA
Fig. 3.3

(i) Unit displacement of end 1 in x-direction.
Due to this, displacement along the axis is 1 x cos@ as shown in Fig. 3.4 (b). Hence forces

development at the ends are as shown in figure.

P =E—AcosG
L

From the definition of elements of stiffness matrix, we get

k;, = P cos@ =ETA00526
k,,=Psng =ETAcosesin9
key = —P cosf = —ETA cos’ 6

k;y=—Psing = —ETAcosesinG



24 Finite Element Analysis

Fig. 3.4

(if) Unit displacement in coordinate direction 2;
ThiscaseisshowninFig. 3.4 (c). Inthiscaseaxial deformationis 1 x sing and theforcesdeveloped
at each end are as shown in the figure.

Or E—Asine
L
ki, = P cos@ = ETAsinG cosf@
ky, = P sin@ :ETAsjnze
ks, = —P cosf = —ETAsinB cos6@

kj,= —Psing = ~FAgn7e

(iif) Unit displacement in coordinate direction 3,
Extension along the axis is 1 x sin@ and hence the forces developed are as shown in the
Fig. 3.4 (d)

OB ETA cos@

k3= —P cosf = —ETACOSZB
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Ky;3=—-Psing = —ETAcosesinG
kg = P cOSO = ETAcos2 6

k;3=P sinf :ETAcosesinG

(vi) Dueto unit displacement in coordinate direction 4,

Extension of the bar is equal to 1 x sn@, and hence the forces developed are as shown in
Fig. 3.4 (e).

O E—Asine
L
kiy = —P cosf = —ETAsinG cos@
kpy= —Psing = —ETAs'nze
ks, = P cosB = ETAsinG cos6

Ky, = P sing :ETAsinZG
0O The stiffness matrix is

cos’ 6 cosdsinf  -cos’0 —cosfsinf

[K] _EA| cosfsng  sn*’6  -cosfsn® —sin’ @
L| —cos’6 -cosfsnf® cos’ 0 cosfsin 6
—-cos@ snf  -sin?6  cosOsinb sn’ 6
2 Im -2 -m
_EA{Im m -Im -m’
CL -2 4am 12 Im ...(3.6)
-Im -m?* Im m?

Where | and m are the direction cosines of the member i.e. | = cos@ andm=cos(90—- 9) =sing.

(v) Beam Element

In the analysis of continuous beams normally axial deformation is negligible (small deflection
theory) and hence only two unknowns may be taken at each end of a element (Fig. 3.5). Typical
element and the coordinates of displacements selected are shown in Fig. 3.5 (b). The end forces
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developed due to unit displacement in al the four coordinate directions are shown in Fig. 3.6 (a, b,

c, d).
y 1 3 5 7 9
{I E, I, E, I, {I E, I {I E, I, é
. ) Yo € ¥
|24 Ll »la LZ »ld L3 »ld L“ 10LI
z [l g gl gl )
(@)
1 3
{i El L /I
]
5 NS
4
(b)
Fig. 3.5
6ET
2 12EI 6E1
o = . e
A Ve AEL g~ =1 e 4
12E1 > 6g L W > 2E1
3 2
. () L SEI (b) L
L2
12E1 6El 2E1 6EI
1 &f : )
| S r ¥ I
= (1 P ~~~~ S 0=1
e 1T T .
B B et T
L © 2
(d)
Fig. 3.6

From the definition of stiffness matrix and looking at positive senses indicated, we can write
(8 Dueto unit displacement in coordinate direction 1,

_12El _ 6EI _ 12El _ 6EI
kyy = L3 21—? kg1 = = L3 41—?
(b) Dueto unit displacement in coordinate direction 2,
K. = 6El _ 4E _ _6El K. = 2El
12 L2 22 L 32 L2 42 L
(c) Dueto unit displacement in coordinate direction 3,
_ 12El _ GEI _12El 6El
kig= - L3 Ko = _? 33—? Kas _?
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(d) Dueto unit displacement in coordinate direction 4,

K = SEl . = 2E _ _6El 4E
14 LZ 24 L 34 L2 L
12 6L -12 6L
FI| 6L 4L> -6L 212
Ok —|_., _
13|-12 -6L 12 -6L
6L 212 -6L 4L?

If axial deformations in the beam elements are to be considered as in case of columns of
frames, etc. (Fig. 3.7), it may be observed that axial force do not affect values of bending
moment and shear force and vice versais also true. Hence stiffness matrix for the element
shown in Fig. 3.8 is obtained by combining the stiffness matrices of bar element and beam
element and arranging in proper locations. For this case

(37

EA 0 o -EA 0
L L
o 1281 6E o 128 6E
I B2 12
o 6Bl 4B _6El 28
[ = ot ot
B o B oo
..(38
_12El _6El ,  12E1 _6El (3:8)
3 12 L3 2
o 6B 28 _6El 4E
L L2 L L2 L
/A AN
(a) (b)
Fig. 3.7

w{@: N
¥

Fig. 3.8
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The following special features of matrix displacement equations are worth noting:

(i) The matrix is having diagonal dominance and is positive definite. Hence in the solution process
there is no need to rearrange the equations to get diagonal dominance.

(if) The matrix is symmetric. It is obvious from Maxwell’ s reciprocal theorem. Hence only upper or
lower triangular elements may be formed and others obtained using symmetry.

(iii) The matrix is having banded nature i.e. the nonzero elements of stiffness matrix are concentrated
near the diagonal of the matrix. The elements away from the diagonal are zero. Considerable saving
is effected in storage requirement of stiffness matrix in the memory of computers by avoiding
storage of zero values of stiffness matrices. The banded nature of matrix is shown in Fig. 3.9.

[e—B—>
A
| |
I} I
n ]
v v
Q
P
\V \Y
N
\Y| \Y|
R
VII VI
VIII VIl
IX IX
A A
Fig. 3.9

In this case instead of storing N xN size matrix only N x B size matrix can be stored.

3.3 SOLUTION OF MATRIX DISPLACEMENT EQUATIONS

The matrix displacement equations are linear simultaneous equations. These equations can be solved using
Gaussian elimination method. L et the equations to be solved be
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8y 3y 3 .o Fg .o Gy Xy
By By Dz e By e Bp| (X

G Qo &z - B o G || X ...(3.2)

Bu @2 G - Gk o Bn] (%o

i.e. [A] {x} ={b}
The Gauss elimination method consists in reducing A matrix to upper triangular matrix and then finding
thevariablesx , X, ..., X...., X,, X, by back substitution

n’ “n-1
Step 1: To eliminate X, in the lower equations:
(i) First equationismaintained asitis
(if) For equations below 1,

@ _ kA
gj" = a; — g
j iy

and b= - by
1

At the end of this, the equations will be

&, &y 3 - Hy .- Xy b,
1) 1) 1) 1 1)
0 a® a® .. ad .. a®| [x,| [b

1 @ 1 1 1
0 &l aQ .. a® .. a®| x [ |6®

1) 1) 1) 1 1)
0 aQ & .. a® .. a®| [x] |B®

The above processis called pivota operation on a, ,. For pivotal operation on a,,, no changes are
made in k" row but for the rows below k™,

(k-1 _ an<

(k) = -1 ..
& 2l akJ fori,j=k+1,...,n

3

bk
and Q(k)—— b&k Yforizk+1,.

k-1
ai(()

After n—1 pivotal operations, matrix equation is of the form
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&1 8o Gz - Gy o & X by
1) 1) 1 1) 1)
0 a9 &) .. af .. a¥ | |x bSY
2 2 2 2
0 0 a2 .. a&a@ .. a2 | [x b{?
k-1 k—1) k-1

0 0 0.. ax V. &l x| [P ..(33)
(0 0 0. 0. & |x) [bF?

From the last equation,

N
aﬂﬂ
and then,
n
b - aj X
Xi:%' i=n-1,n-2.1 -..(34)
)

Thus the required solution is obtained.

3.4 TECHNIQUES OF SAVING COMPUTER MEMORY REQUIREMENTS

InFEM size of stiffnessmatrix of size 1000 x 1000 or even moreisnot uncommon. Hence memory requirement
for storing stiffness matrix is very high. If user tries to implement Gaussian elimination straight way as
described above, ends up with the problem of shortage of memory. The following techniques are used to
reduce memory requirement for storing the stiffness matrices:

(i) Useof symmetry and banded nature
(i) Partitioning of matrix (Frontal solution).
(iif) Skyline storage.

(i) Use of Symmetry and Banded Nature

Since the stiffness matrix is always symmetric and banded in nature, techniques have been devel oped to store
only semiband width of non-zero elements and get the solution. If B isthe semiband width of N x N matrix we
need to store only N x B elementsasindicated in Fig. 3.9(b). The diagonal of the given matrix is stored asthe
first column of the modified matrix. The computer coding is modified to use modified matrix for the solution
of the given problem. The modification required is,

gi=ai,(j-i+)
(i) Partitioning of the Matrix

For larger systems, even this method of storage may be inadequate. In such cases the partitioning of the
matrix is made as shown in Fig. 3.10.
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Fig. 3.10

Then only few of the triangular sub-matrices need to be stored in the computer core at agiven time, while
the remaining portions are kept in peripheral shortage like hard disk. It may be noted that the elimination
performed using one row affects only the triangle of element within the band below that row. For example, in
Fig. 3.10 reduction involving row PQ modifiesonly thetriangle PQR. Thispermitsusto carry out the elimination
with only few of the sub-matrices of Fig. 3.10 in core. Frontal Solution Technique is developed on this scheme.

(iii) Skyline Storage

Further saving in memory requirement is by making use of skyline storage technique. In this system of
storage, if there are zeros at the top of a column, only the elements starting from non-zero value need to be
stored. The line separating the top zeros from the first non-zero element is called the skyline. For the matrix
given below the skylineis indicated.

0]

A ap [ 0[ay| 0 O
Ay dy3 0 Ay | 0 0

0

0
a3 ag 0 agp (0 0

0

a
48 | sky line
as5 A Ag7 | O

Ags g7 Agg
az;  agg

Agg |
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QUESTIONS

1. Define stiffness matrix and explainsits special features.
2. By direct stiffness matrix approach, determine stiffness matrix for
() Bar Element
(b) Truss Element
(c) Beam element neglecting axial deformation
(d) Beam element (Frame Element), considering axial deformation also.
3. Briefly explain various attempts made to reduce memory requirement in storing stiffness matrix.
4. Explain theterm “Skyline Storage Technique’.
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Element Shapes, Nodes, Nodal
Unknowns and Coordinate Systems

4.1 INTRODUCTION

In this chapter, element shapes, types of nodes, order of the element, types of nodal unknowns, are disscussed.
Global —Local coordinate systemsand natural coordinate systemsare explained. Beforetaking up mathematical
aspect of finite element analysis, these preliminaries are to be understood.

4.2 ELEMENT SHAPES

Based on the shapes elements can be classified as
(i) Onedimensional elements
(i) Two dimensional elements
(iif) Axi-symmetric elements and
(iv) Three dimensional elements.

One Dimensional Elements

These elements are suitable for the analysis of one dimensional problem and may be called as line elements
also. Figure 4.1 shows different types of one dimensional elements.

03 e o —— X
1 2

og e o — P X
1 3 2

og e < 1= O ———p X
1 3 4 2

Fig. 4.1 One dimensional elements
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Two Dimensional Elements

We need two dimensional elementsto solve two dimensional problems. Common two dimensional problems
in stress analysis are plane stress, plane strain and plate problems. Two dimensional elements often used is
three noded triangular element shown in Fig. 4.2. It has the distinction of being the first and most used
element. These elementsareknown asConstant Strain Triangles(CST) or Linear Displacement Triangles.

3

Fig. 4.2 Constant strain triangle

Six noded and ten noded triangular elements (Fig. 4.3) are also used by the analysts. Six noded triangular
element isknown asLinear Strain Triangle (L ST) or as Quadratic Displacement Triangle. Ten noded

3

N ¢

1 4
() (b)

Fig. 4.3 (a) Linear strain triangle (b) Quadratic strain triangle

triangular elements are known as Quadratic Strain Triangles (QST) or Cubic Displacement Triangles. One
can think of trying the use of still higher order triangular elements like Cubic Strain Triangles and Quartic
Strain Triangles.

A simple but less used two dimensional element is the four noded rectangular element whose sides are
parallel to the global coordinate systems (Fig. 4.5). Thissystemsiseasy to construct automatically but it isnot
well suited to approximate inclined boundaries.
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(b)

Fig. 4.4 (a) Cubic strain triangle (15 noded) (b) Quartic strain triangle (21 noded)

»
»

> x
Fig. 4.5 4 noded rectangular element
Rectangular elements of higher order also can be used. Figure 4.6 showsafamily of L agrangerectangle

in which nodes are in the form of grid points. Figure 4.7 shows the family of Serendipity rectangles which
are having nodes only along the external boundaries.

® & o @ = @ = )
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o o) q
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© © q o o o q
o 7Y ) & 7=t ® 2=t )
@ @ @ o @ )
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o o) ® =t o a ® o o o)

Fig. 4.6 Lagrange family rectangular elements
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Fig. 4.7 Serendipity family rectangular elements

Quadrilateral Elementsarealso used infiniteelement analysis (Fig. 4.8). Initially quadrilateral elements
were developed by combining triangular elements (Fig. 4.9). But it has taken back stage after isoparametric
concept was devel oped. | soparametric concept is based on using same functions for defining geometries and
noda unknowns. Even higher order triangular elements may be used to generate quadrilateral elements.

y
A 3
4
2
1
0 > X
Fig. 4.8 Quardilateral element
y y
A 3 A A
4
2
1
> X > X > X

Fig. 4.9 Quardilateral elements generated using triangular elements
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Using isoparametric concept even curved elements are devel oped to take care of boundaries with curved
shapes (Fig. 4.10).

»
»
»
»

>
»
>
»

<

Fig. 4.10 Curved two dimensional elements

» X » X

Axi-symmetric Elements

These are also known as ring type elements. These elements are useful for the analysis of axi-symmetric
problems such as analysis of cylindrical storage tanks, shafts, rocket nozzles. Axi-symmetric elements can be
constructed from one or two dimensional elements. One dimensional axi-symmetric element is a conical
frustum and atwo dimensional axi-symmetric element isaring with atriangular or quadrilateral cross section.
Two such elements are shown in Fig. 4.11.

/ ' \
//”""“~\\ '

W\ |

Fig. 4.11 Axis-symmetric elements
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Three Dimensional Elements

Similar to the triangle for two dimensiona problems tetrahedron is the basic element for three dimensional
problems (Fig. 4.12). Tetrahedron is having four nodes, one at each corner. Three dimensional elementswith
eight nodes are either in the form of ageneral hexahedron or arectangular prism, which isa particular case of
ahexahedron. Therectangular prism element ismany times called asabrick element also. In these elements
also one can think of using higher order elements. (Fig. 4.12).

4

@ ®)

7
3
5
1
(d)
2
©
Fig. 4.12 (a) Tetrahedron element (b) Rectangular prism (brick) element
(c) Arbitrary hexahedron element (d) Three dimensional quadratic element
4.3 NODES

Nodes are the selected finite points at which basic unknowns (displacementsin elasticity problems) areto be
determined in the finite element analysis. The basic unknowns at any point inside the element are determined
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by using approximating/interpolation/shape functions in terms of the nodal values of the element. There are
two types of nodesviz. external nodes and internal nodes. External nodes are those which occur on the edges/
surface of the elements and they may be common to two or more elements. In Fig. 4.13, nodes, 1 and 2 in one
dimensional element, nodes 1 to 9 in 10 noded triangular element and nodes 1 to 8 in 9 noded lagrangian
element are external nodes. These nodes may be further classified as (i) Primary nodes and (ii) Secondary
nodes.

1, 2 — Primary nodes

C13 3 7 2 3, 4 — Internal nodes
. 1, 2, 3, 4 — Primary nodes
3 _ , 2,3, y
411' é g 7Pglrgarysl%%?%ar nodes > 6, 7, 8~ Secondary nodes
vvvvv - y 9 — Internal node
10 — Internal node 7
4(.\ o ) 3
-
8 09 Q6
& © o
1 4 5 2 1 5 2

@ (b)
Fig. 4.13 (a) 10 noded triangular element (b) 9 noded Lagrange element

Primary nodes occur at the ends of one dimensional elements or at the corners in the two or three
dimensional elements. Secondary nodes occur along the side of an element but not at corners. Figure 4.13
shows such nodes.

Internal nodes are the one which occur inside an element. They are specific to the element selected i.e.
there will not be any other element connecting to this node. Such nodes are sel ected to satisfy the requirement
of geometric isotropy while choosing interpolation functions. Figure 4.13 shows such nodes for few typical
Cases.

4.4 NODAL UNKNOWNS

Basic unknownsmay bedisplacementsfor stressanalysis, temperaturesfor heat flow problemsand the potentials
for fluid flow or in the magneticfield problems. In the problems like truss analysis, plane stress and plane
strain, it is enough if the continuity of only displacements are satisfied, since thereis no change in the slopes
at any nodal point. Such problems are classified as ‘zeroth’ continuity problems and are indicated as C%
continuity problem. In case of beams and plates, not only the continuity of displacements, but the slope
continuity also should be ensured. Sincethe slopeisthefirst derivative of displacement, thistype of problems
are classified as ‘First order continuity problems and are denoted as C* — continuity problems. In exact

2
;Vyj continuity should be ensured. Hence the actual nodal

plate bending analysis even second order (
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, ow ow d°w

unknownsin these problemsarew, —, —,

ox oy oxoy

C2- continuity problems. In general C' continuity problems are those in which nodal unknowns are to be
basic unknowns and up to r'" derivatives of the basic unknowns.

wherew isdisplacement. Such problemsare classified as

4.5 COORDINATE SYSTEMS
The following terms are commonly referred in FEM

(i) Global coordinates
(if) Local coordinates and
(iif) Natural coordinates.

However there is another term ‘generalized coordinates used for defining a polynomial form of
interpolation function. This has nothing to do with the * coordinates’ term used here to define the location of
pointsin the element.

Global Coordinates

The coordinate system used to define the points in the entire structure is called global coordinate system.
Figure 4.14 shows the cartesian global coordinate system used for some of the typical cases.

1 1 2 2 3
o}— G S & © > x
Xl XZ X3

(@

y
A
2 (6) 3 (8) 4
(5) (12)
1 7
1) @) @ © 1)
@ 4 (10) (13) 5 >

1 6 7 8 '

(b)

Fig. 4.14 Global coordinate system

Local Coordinates

For the convenience of deriving element properties, in FEM many timesfor each element a separate coordinate
system is used. For example, for typical elements shown in Fig. 4.14, the local coordinates may be as shown
in Fig. 4.15. However the final equations are to be formed in the common coordinate system i.e. global
coordinate system only.
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X
y
2
y
(1)
@ .
1 6 "
1 '
*
b2
y
3)
Ye— 45 “) '
6 7

Fig. 4.15 Local coordinate system

Natural Coordinates

A natural coordinate system is a coordinate system which permits the specification of a point within the
element by aset of dimensionless numbers, whose magnitude never exceeds unity. It isobtained by assigning
weightages to the nodal coordinates in defining the coordinate of any point inside the element. Hence such
system hasthe property that ith coordinate has unit value at nodei of the element and zero value at al other nodes.

The use of natural coordinate system is advantagesin assembling element properties (stiffness matrices),
since closed form integrations formul ae are avail able when the expressions are in natural coordinate systems.

Natural coordinate systems for one dimensional, two dimensional and three dimensional elements are
discussed below:

Natural Coordinates in One Dimension

Consider thetwo noded line element shownin Fig. 4.16. let the natural coordinate of point P be (L, L,) and the
Cartesian coordinate be x. Node 1 and node 2 have the Cartesian coordinates x, and X,.

N P(L.L)
o} G S > X

4
A
-
A 4

-
-
vy v
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Since natural coordinates are nothing but weightage to the nodal coordinates, total weightage at any point
isunity i.e.,
L,+L=1 ..(42)
andalsoL x, +L,X,=X ...(4.2)
i.e. In matrix form

_ 1 X 101 _ 1 X, = X
_xz—xl =X 1]|x _xz—xl =X + X

Noting that x, — X, isthe length of the element
say, |, we can write

L]_ X2 - X
= I
X =% ...(4.3)
I

Thevariationof L andL,isshowninFig. 4.17.L, is1at node 1 and iszero at node 2 whereasL, iszero
when referred to node 1 and is one when referred to node 2. The variation is linear.

1 2
G O
T

1

v

(a) Variation of L,

T

1

v

(b) Variation of L,

Fig. 4.17  Variation of natural coordinates L, L,
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The standard closed form integration over entire length is

Xy
P g - p! gl
le LY dx —(p+Q+1)!| ..(4.4)

X

Example. 4.1: Integrate the following over the entire length | of the element:

| I
() [13 ox (i) [ Loax

|
Solution: (i) L2 dx
(o]

|
ol
Using the standard formula, lLf L3 dx = (p+q+1) qu+ 1)
Wenote, p=2, q=0.
|
20
L2 dx =
Hence J. 1 (2+0+1)
[0}
= 2 | == Answer
2x3
' 31
.. 3 = S
(i) J.Ll Lodx = (3+1+1)!I
[0}
3x2x1 I
= Answer

" 5x4x3%x2 20

Natural Coordinate &

In one dimensional problem, the following type of natural coordinate is also used. The natural coordinator &

for any point in the element shownin Fig. 4.18 isdefined as & = (L

XX
2

The relationship between natural coordinate & and Cartesian coordinate x can be easily expressed as

where P isthe point referred and

C isthe centre point of nodes 1 and 2.

shown next page:
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| 1 c P 2
O I €, © » X
Xy Xl |:|X2 X X,
2
0ooo 1 ooo O 0o 1

Fig. 4.18 Natural coordinate &

T

1

1 v

0 2

Fig. 4.19 \Variation of &

g:PT = x—lxc' where | islength of the element = x, —Xx;

I

:E X_X2+Xl
| 2

_2(y X% X+ 2%
I 2

23 X_I+2x1
| 2

I

—(1+¢&)=x-Xx

S+ =x-x

It may be noted that, at node 1 where x = x,,
l2(1+6)=x—x1=0

D&- 1

..(4.5)
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and at node 2, where x = x,, we get

12(1+§):x2—xlzl

or E=1
The variation of local coordinate & isas shownin Fig 4.19.

Theintegration formulafor integration over entire length is

Xo 1
J.E pdx = J.Eplz dé since dx =T2 dé (refer equation 4.5)
-1

X

LI PR o

) p+1["; ]—1

=0, if pisodd ...(4.68)

-1 1 (2)-L if piseven 4.6b
2 p+1l p+1’ P -+ (4.60)

Natural Coordinates in Two Dimensions
Natural coordinates for triangular and rectangular elements are discussed below:

1. Natural Coordinatesfor Triangular Elements: Consider the typical 3 noded triangular element shown
inFig. 4.20. Since there are three nodes, for any point there are three coordinates, say L, L, and L,. From the
definition of natural coordinates, we have

y
A

> X
Fig. 4.20 Typical 3 noded triangular element
L+L+L,=1 ...(4.79)

Lx +L,x, +L,x,=X ...(4.7b)
Ly, +LY,+Ly,=y ..(4.70)
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Expressing the above equations in matrix form,

1 1 1 L,

X; Xo Xg| ALy =
Y1 Y2 Wi Ls

Ls Y1 Y2 ¥

It can be shown that the determinant,

1 1 1
X; X Xg
Yi Y2 Y3
is equal to twice the area of triangle with corners (x,, y,), (X,, y,) and (x,, y,)
Proof: Now,
1 1 1
Det =[x X Xg =(X2¥3 = X3¥p) ~(% Y5 =X Y1) +(X Yo =% 1)
Yi Y2 VY3

Consider the triangle ABC shown in Fig. 4.21. Drop perpendiculars AD, BE and CF on to x-axis.

y
A
C.3 (% ¥
B
XZ! 2,
2( ¥2)
A
(le .yl) 1
» X
D E F
Fig. 4.21

Now, Area of triangle ABC
=Area ADEC + Area CEFB — Area ADFB

= % (AD + CE) DE +%(CE + BF)EF —% (AD +BF) DF
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1 1 1
=5 (Y1 + ¥a) (X3 = %) +§ (Y3 +¥2) (%2 —%s) > 1 +¥2) (%2 =)
1
= 5 [Y1X3 = YiXg F YaX3 T Y3Xg FY3X TY3Xg HYoXp —YoXg VX tYiXy TYoXp +y2X1]
1
= 5 [Y1X3 “YaXp t Y3Xo ~ YoXz —YiXp * YZX1]
_1
=5 [(Xzys = Xg¥2) ~(XaYs ~ Xa¥1) *+(X1¥2 - XzYl)]
1
= E Det
O Det =2 Areaof triangle ABC = 2A ...(4.8)
T
Ly 1 XYz~ X3¥2  XgY1 T XYz X1Y2 T X\ 1
U4 L 230\ Y27 VY3 Y3= Y1 Y17 Y2 X
Ls X3~ X X1~ X3 Xp =X y

X¥3= X3Y2 Y2~ VY3 X=X | |1
256\ X3V1= %Yz Ya= Y1 XX |{X( = | b ¢
X1Yo= XY Yi— Y2 X=X | Y

where A =XY, =Xy, &EXY, —XY, & EXY,—XY,
blzyz_ys b2:y3—y1 bazyl_yz
C=%=% =X =% C=%—X
[Note the cyclic order of subscript and absence of subscript of left hand term in right hand terms]
Thus

a+bx+cgy
Ly 2A
L2 - a2 + bZX + %y
2A ...(4.9)
Ly ag+ byx + ¢y
2A

Referring to Fig. 4.22 and applying equation 4.8, we get Area of subtraingle CPB
11 1
=2A =X X X5
Yy Y2 Y3
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y y
A

»
»

» X » X

Fig. 4.22 Area coordinates for a triangle

e, 2A1:X2y3_X3y2_(Xy3_X3y) XY, =Xy
=Xy, XY, * X(yz - ya) + y(X3 - Xz)
=a thx+cy

Thirdly 2A,=a,+bx+cy

and 2A,=a,+bx+cy

0 Equation 4.9 reducesto

2A
L| [2A A
2A,| 1
L,y ={—r=el == A2
[ leAa ] A ...(4.10)
L| |2a Ay
2A

where A, A, and A, are the areas of sub-triangles PCB, PAC and PAB, which are oppositeto nodes 1, 2 and 3
respectively. Hence the natural coordinates in triangles are also known as ar ea coor dinates.

Note the following:

To get the natural coordinate of A, P isto be moved to A. Thenwefind areaA =A,A,=A,=0
0OA(@D0,0)

Similarly natural coordinates of B and C are

A(0, 1,0), C(0,0,1)
For the point Q,, natural coordinates are to by found by shifting P to Q, (refer Fig. 4.22(b)). In this case
A=0,
A =%CQ h
A, =%BQ, h

Where h is perpendicular distance of A from BC.
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ThenA=%BCh

0 Lg % 0
1
cQh
Lof 20 o
A lgo, BC
1
~BQh
Lszﬁzz Ql _BQ]-
A %BCh BC

Thus natural coordinate representation of Q, is

(o CQ BQ
Ql_(o' BC ' Bcj

QZ:(CQ2 0 AQZ)

Thirdly, AC' " BC
BQ, AQ
and Qa= (AB B OJ

The closed form integration for the function
ifo L9 LY dA

ptgtr!
—— 2A .. (411
(p+qg+r +2) (4.19)

Example 4.2: Determine the values of

() fLolsLsda
A

(ii) jSLi L, dA
A

(iii) ii;Lf 12 12 dA
A

Solution: (i) fi;Ll L, Ly dA
A

Now,p=1, q=1, r=1
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raoa oA _ 1x1x1

DjSL L Lyds ———= _ppa_  1x1x1
J 1723 (L+1+1+2) Ex4x3x2x1

(ii) EﬁLi L, dA
A

Inthiscase, p=3, gq=1, r=0

310
j;LideAz(3+l+0+2)l2A= Sxzxixixl
A : 6x5x4x3x2x1

(iii) Efo 12 13 dA
A

Inthiscasep=2,q=2,r=3
223
21213
DiLl L2 12 dar —(2+2+3+2)!2A
_ 2x1x2x1x3x%x2x1 oA = A
9x8x7x6x%x5x4 x3 x2 x1 ~ 7960

Natural Coordinates for Rectangular Elements

Natural coordinates for rectangular elements are as shown in Fig. 4.23. In these cases the centroid of the area
is the origin. The relationships between the local coordinates and the Cartesian coordinates are based on

isparametric concept, which istaken up in the latter chapter. It may be noted here that the coordinates £ and
n vary from—1to 1. Therelationship between global coordinates and the natural coordinatesare x = X L; X
and y=2L;y;.The derivation of L, are discussed in the chapter ‘isoparametric elements’. When the
expressions are formed in these coordinate systems, instead of seeking integrations in the closed form

expressions, numerical technique is usually employed.

n

4(-1,1) A 3(1,1)
@ Q
P (3, n)
o >0
G 9
1(-1,-1) 2(1,-1)

A

" 60

60

Fig. 4.23 Local coordinate system for a rectangular element
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Natural Coordinates in Three Dimensions

Natural coordinatesfor a4 noded tetrahedron may be derived and it resultsinto volume coordinates. Consider
the typical tetrahedron shown in Fig. 4.24.

Fig. 4.24 Tetrahedron coordinates

The natural coordinates are related to the Cartesian coordinates as follows:

1 1 1 1 1 L,
X[ _[%X X2 X3 X4 L,
y i Y2 Yz Ya| |Ls ..(412)
z Z 2, 723 % L,
The above equation may be solved by inverting the 4 x 4 matrix. It gives
Lizé(q+QX +qy +dz), fori=1,23and4 ..(4.13)
1 1 1 1
where 6V = =6 x volume of tetrahedron defined by nodes 1, 2, 3 and 4
Y1 Y2 Y3 Vs
4 L Iz 4
X, X3 %4 1 1 1
and =Y, Y3 Ya| D=2 Y3 Va

Zz 23 Z4 22 23 Z4
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1 1 1 1 1 1
Ci=|X X3 X4 and d;=|X, X3 X4
L 3 4 Yo Y3 VYa

The other constants are obtained by cyclic changes in the subscripts. It may be noted that the above
equations are valid only when the nodes are numbered so that nodes 1, 2 and 3 are ordered counter clockwise
when viewed from node 4. It isalso hecessary that for coordinates system of right hand ruleis strictly adhered
to.

If V,isthe volume of the smaller tetrahedron which has vertices P and the three nodes other than the node
i, then the tetrahedron coordinates can be considered as volume coordinates, defined as

L =— for i=1, 2, 3 an ..(4.
i \\//'f 1,2,3and 4 4.14

The closed form integration formula for the volume coordinatesis

P g T s _ pl g r! s 415
Ele S vkl ...(4.15)
\Y

Example 4.3: Find the values of the following:
(i) 5{§L1 L, Ly L, dV (ii) jELi L, L, dV
v v
Solution: (i) ile L, L, L, dv
v

Inthiscase p=1,g=1,r=1s=1
Hence using equation

g r! g
A E NI VS < 6V
j}l 2 L3 La (p+q+r+s+3

| I g | I |

weget, Ll Lyl av= P10 1xlxixl
v (1+1+1+1+3) 7x6x5x4 x3 x2 x1
v
:% Answer

(ii) jSLi L, L, dV
\%

Inthiscasep=2,q=1,r=0ands=1

21001
(2+1+0+1+3)

Dj;Lf L, L, d&
v
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2x1x1x1 _ vV Answer

T 7x6x5x4x3x2 x1 420

Natural Coordinates for Hexahedron

Figure 4.25 shows atypical hexahedron with natural coordinates. It has origin at centroid of the hexahedron.
It may be noted that natural coordinates vary from —1 to +1. The natural coordinates are related to global
coordinates as

i 0
| i
o P G
ot UitV ittt »>n
z g ¥
. o
&
y
X
Fig. 4.25
X=ZLX
y=> Ly adz=xLz ...(4.16)

Thederivation of L, isdiscussed under the chapter ‘I soparametric Elements . L ater for integration numerical
techniqueis preferred. Hence no discussion istaken up here about the closed form integrationsfor such cases.

QUESTIONS

1. Explain the following terms clearly
(i) Nodes, primary nodes, secondary nodes and internal nodes
(if) Local coordinates, global coordinates, natural coordinates and area coordinates.
(iif) Higher order elements and lower order elements.
2. Explain theterms
(i) Constant strain triangle (CST)
(if) Linear strain triangle(LST) and
(iif) Quadratic strain triangles (QST).
3. Explain the term C'-continuity.
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4. Derivethe expressions for natural coordinates for atwo noded element
(i) Intermsof L, and L,, whenrangeisOto 1
(i) Intermsof &, whenrangeis—1to 1.

5. Derive expressions for natural coordinatesin a CST element. Show that they are nothing but area
coordinates.
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Shape Functions

5.1 INTRODUCTION

In the finite element analysis aim is to find the field variables at nodal points by rigorous analysis, assuming
at any point inside the element basic variable is a function of values at nodal points of the element. This
function which relates the field variable at any point within the element to the field variables of nodal points
is called shape function. This is also called as interpolation function and approximating function. In two
dimensional stress analysisin which basic field variable is displacement,
u=XNuy,v=ZNy ...(5.1)
where summation isover the number of nodes of the element. For example for three noded triangular element,
displacement at P (x, y) is
u=2N;y =Ny +Nyu, + Njug

V=2N;V, =Nyv; + Nyv, + Ngvg

U
Vi
_ u [N 0 N, 0 N3 0]y
e {v}"[o N, 0 N, 0 NJ v
Us
V3

U U

Uy Uy

ul [N Ojjus| [N, N; N;. 0 0 O[]y

o {v}"[o N} Vi "[o 0 0 N, N, NJ Vi

Va Va

A A

or {0} =[N] {3}, ..(5.23)

2x1 2%x6 6x1
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where g is displacement at any point in the element
[N] shape function
{6}, isvector of nodal displacements
Similarly in case of 6 noded triangular element
{a} = [N] {9}, ...(5.2b)
2x1  2x12 12x1
In case of 4 noded rectangular element

or {8} =[N] {3}, .(5.20)

2x1 2x8 8x1

5.2 POLYNOMIAL SHAPE FUNCTIONS

Polynomials are commonly used as shape functions. There are two reasons for using them:
(i) They areeasy to handle mathematically i.e. differentiation and integration of polynomialsiseasy.

(if) Using polynomial any function can be approximated reasonably well. If a function is highly
nonlinear we may haveto approximatewith higher order polynomial. Fig. 5.1 shows approximation
of anonlinear one dimensional function by polynomials of different order.

u u u
w 00,00 »x v 00,00 ,0 5x
“““ M0,
(a) Constant (b) Linear (c) Quadratic

Fig. 5.1 Approximation with polynomials

One Dimensional Polynomial Shape Function

A genera one dimensional polynomial shape function of nth Order is given by,

U(X) = a1+ a0, X+a X2 + .0 g X" ...(5.3)
In matrix form u =[G] {a} ...(5.4)
where [G] = [1,x,x2... x”]
and {a}Tz[alaza3 e n+1]

Thus in one dimensional n" order complete polynomial thereare m=n+ 1 terms. ...(5.5)
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Two Dimensional Polynomial Shape Function

A general form of two dimensional polynomia model is

U(X,Y) S a1+ A, X+a 3y +a 4 X2 +a s Xy 0 gy 4 ;X ... @ Y"

..(5.6)
VX, Y) S0y Ao X +Q iz Y + o 40 5 Y

_Ju(xy)| _ |G O
or {6} = {v(x, y)} =[G}{a} = [ 0 Gj{a} ...(6.7)
where G=[1xyxxyy x.yl

T
{a} =[a,a,0 30,4 .0 o)
It may be observed that in two dimensional problem, total number of terms min a complete nth degree
polynomial is

For first order complete polynomial n =1,

1+)h(1+2
L@y
2
Thefirstthreetermsare a,;+a, x +a 3y
. (2+1)(2+2)

Similarly forn=2, m= B E— =6

and we know thefirst six terms are,
Qu+ QX +A5Y +0, X +0 5 Xy +0 Y

Another convenient way to remember complete two dimensional polynomia is in the form of Pascal

Triangle shownin Fig. 5.2

A Constant 1
|
X i Linear 3
| Yy
X5 ' - Quadratic 6
X ' ; ; Cubic 10
Xy I Xy y
4 | :
uartic 15
X x Y Nxy 2 \xy° ' Q
s [ -
7 | RN % Quintic 21
I
x° Hexadic 28
Xy Xy 2 Xj;)_ 3 Xf/ 4 Xys ys

Fig. 5.2 Pascal triangle
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Three Dimensional Polynomial Shape Function
A general three dimensional shape function of nth order complete polynomial is given by

UX,Y,2) = +a, X +a3y +a ,Z +a s X2 +... 40 X"z

_ 2 n-1
V(X,¥,2) = Oy + O mia X+ mig Y +0 ia Z +0 i X+ 340 o0 X 2

_ n-1
W(X,Y,2) = Oomeg ¥ O omez X A omig Y +0 omag Z oo 0 g X2

u(x,y,2) G, 0 0
o 5(x,v.2)= {v(x.v.2 L =[cl{at=| 0 & ©|{a}
w(X,Y,2) 0 0 G

Where G, = [1Xy zX*xyy?yzZ° zX ...2" 2% ... 2X*']

and [a} =[a,0,0 5.0 5]

...(5.9)

...(5.10)

It may be observed that a complete nth order polynomial in three dimensional case is having number of

terms m given by the expression

_(n+)(n+2)(n+3

m=
6
1+)(1+2)(1+
Thuswhennzl,m=( )( 5 )( )=4
i.e a,ta,x+azy+a,z

(2+1)(2+2)(2+3) _
5 =
Thus second degree complete polynomial is

Forn=2, m= 10

2 2 2
QU X+A3y A, Z 40 X" HA g Xy 40 7y W gyZ 8 oZ° & 1o X

Complete polynomial in three dimensions may be expressed conveniently by a tetrahedron as shown in

Fig. 5.3.

5.3 CONVERGENCE REQUIREMENTS OF SHAPE FUNCTIONS

Numerical solutions are approximate solutions. Stiffness coefficients for a displacements model have higher
magnitudes compared to those for the exact solutions. In other words the displacements obtained by finite
element analysisarelesser than the exact values. Thusthe FEM giveslower bound values. Henceit isdesirable
that asthefinite element analysis mesh is refined, the solution approaches the exact values. Thisrequirement
is shown graphically in Fig. 5.4. In order to ensure this convergence criteria, the shape functions should

satisfy the following requirement:



Shape Functions

Constant 1

Linear 4

Quadratic 10

Cubic 20

Quartic 35

2

xyz*

Xy

yz

22

Xy

xy®

xy’z

4

y

yz

15 terms

Fig. 5.3 Terms at base of quartic tetrahedron of polynomial
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1. The displacement models must be continuous within the elements and the displacements must be
compatible between the adjacent elements. The second part impliesthat the adjacent elements must
deform without causing openings, overlapsor discontinuities between the el ements. Thisrequirement

iscalled ‘compatibility requirement’ .
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5 =4
0 Exact solution » No. of elements

S
]
S

-5 +

FEM solution
-10 +

Fig. 5.4 Convergence of FEM solution

According to Felippa and Clough this requirement is satisfied, if the displacement and its partial
derivatives upto one order lessthan the highest order derivative appearing in strain energy function
is continuous. Hence in plane stress and plane strain problems, it is enough if continuity of
displacement is satisfied, since strain energy function includes only first order derivatives of the
displacement (SE = % stress x strain). It implies, it is enough if C° continuity is ensured in plane
stress and plane strain problems. In case of flexure problems (beams, plates, shells) the strain

: o : L1 M? d*w
energy terms include second derivatives of displacements | like SH where M = —El o2 |
X

Hence to satisfy compatibility requirement, not only displacement continuity but slope continuity
( C* -continuity) should be satisfied. Hence in flexure problems displacements and their first
derivatives are selected as nodal field variables.

. Thedisplacement model should include therigid body displacementsof the element. It meansin

displacement model there should be aterm which permit all points on the element to experiencethe
same displacement. It isobvious, if such term do not exists, shifting of the origin of the coordinate
system will cause additional stresses and strains, which should not occur. In the displacement
model,

Uu=a,+a,Xx +agzy

the term a, provides for the rigid body displacement. Hence to satisfy the requirement of rigid
body displacement, there should be constant term in the shape function selected.

. Thedisplacement models must include the constant strain state of the element. Thismeans, there

should exist combination of values of polynomial terms that cause al points in the element to
experiencethe same strain. One such combination should occur for each possible strain. The necessity
of this requirement is understood physically, if we imagine the refinement of the mesh. As these
elementsapproach infinitesimal size, the strainswithin the element approach constant values. Unless
the shape function term includes these constant strain terms, we cannot hope to converge to a
correct solution. In the displacement model,

USQ +0oX 03y +0 4 X2+ 40 y"
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— 2 n
V=0 P 0 X 0 i3y H0 g X5+ H0 o Y
o, and Qmsp provide for uniform strain €,

o5 and 0.3 provide for uniform strain €y

An additional consideration in the selection of polynomial shape function for the displacement model
is that the pattern should be independent of the orientation of the local coordinate system. This property is
known as Geometric | sotropy, Spatial | sotr opy or Geometric I nvariance. There aretwo simple guidelines
to construct polynomial series with the desired property of isotropy:

1. Polynomial of order n that are complete, have geometric isotropy.

2. Polynomial of order n that are not complete, yet contain appropriate termsto preserve ‘ symmetry’
have geometricisotropy. Thesimpletest for this property isto interchange x and y in two dimensional
problemsor x, y, zin cyclic order in three dimensional problemsand seethat thetotal expression do
not change. However the arbitrary constants may change.

For example, we wish to construct a cubic polynomia expression for an element that has eight
nodal values assigned to it. In this situation, we have to drop two terms from the complete cubic
polynomial which contains 10 terms. To maintain geometric isotropy drop only termsthat occur in
symmetric pairs i.e. X3, y® or x?y, xy?. Thus the acceptable eight term cubic polynomials shape
function exhibiting geometric isotropy are

al+azx+a3y+a4x2+a5xy +aey2+a7x2y o 8Xy2

and a;+a, X +agy 0, +asxy Ha gy 4 o xC @ gy®

Infiniteelement analysis, the safest approach to reach correct solution isto pick the shape functions
that satisfy all the requirements. For some problems, however, choosing shape functions that meet
all the requirements may be difficult and may involve excessive numerical computations. For this
reason some investigators have ventured to formulate shape functions for the elements that do not
meet compatibility requirements. In some cases acceptable convergence has been obtained. Such
elementsare called ‘ non-confor ming elements’. The main disadvantage of using non-conforming
elementsisthat we no longer know in advance that correct solution is reached.

5.4 DERIVATION OF SHAPE FUNCTIONS USING POLYNOMIALS

Initially shape functions were derived interms of Cartesian coordinates. Polynomial function were used for
this. After natural coordinates were identified and its advantage was noticed researchers started deriving
shapefunctionsintermsof natural coordinates. By this approach more elements could be devel oped. Advantages
of using L agrangian and Hermetian functionswere discovered | atter. To handlefew special cases, degeneration
technique was a so developed. In this artiae these methods are illustrated for various elements.

Polynomial Functions In Terms of Cartesian Coordinates

In this approach polynomials with number of constants exactly equal to nodal degrees of freedom of the
element are selected. Care is taken to see that geometric isotropy is not lost. Using nodal values number of
equations equal to number of constantsin the polynomials are formed and then the constants found. Then the
shape functions areidentified. This procedure may also be called as gener alized coor dinate approach, since



62  Finite Element Analysis

the constants in the polynomial are called as generalized coordinates. This procedure isillustrated with few

cases below.

Example 5.4: Using generalized coordinate approach, find shape functions for two noded bar/truss element.

Solution: Figure 5.5 showsthe typical truss element. In this case nodal unknowns are displacements u, and u,
along x-axis. For thiselement we have to select polynomial with only two constantsto represent displacement

at any point in the elements. Hence we select

u=a,+a,Xx

..(5.12)

where a; and a, are generalized coordinates. This polynomial satisfies compatibility and completeness

requirement. Writing equation 5.11 in the matrix form we have,

P

o

| 1
I G

oN

2
u. u

i

2

X, T

»
"l

X

<

A
—

= —f

Fig. 5.5 Bar/Truss element with two nodes

u=[1 %] {Zj

since u = u, a node 1 and equal to u, at node 2, we have

@ ={n)=; elien]

i o P I B Bl B e T

0w [1x] {Z;} =2 Xhl[fi 1} {i}
SO NG [

u
=[Ny Ng] {Uz} =N,y +N,u,



_X=X
I

X
where and N,

Thus the shape function [N] is

[N =[N )= | 2% 25

Variation of shape function N, and N, is shown in Fig. 5.5. (b).

Example 5.5: Using polynomial functions (generalized coordinates)
noded beam element.

} Answer

Shape Functions 63

..5.12.

determine shape functions for a two

X, =0

-

1

v
N, —>

1
N, —»
N, —>
j/

N, —»

Fig. 5.6 Variation of shape functions in a beam element

Solution: The typical beam element is shown in Fig. 5.6. (a). In this case C' — continuing is to be satisfied,

2

. . L ' - dw L
since strain energy expression involves second differentiation term F . Hence in this case at each node,
X

unknowns are the displacement and slope. i.e.,
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{0} =

where 0, = —=

and 92 =_<
Since there are four nodal values, we select polynomial with four constants. Thus
W= +a,x +a3x +a 4 x° ...(5.13)

Equation 5.13 satisfies compatibility and completeness requirement. Now,

ow 2
O0=—=0a,+2a.x +30,4X
dX 2 3 4

For convenience we select local coordinate system.
i.e., x =0
X, =1
Uws a;
6,=a,

Wo =a+a,l +agl? +a, 13

0, = 0, + 204 +30,l2

w) [1 0 0 0]fa;
. 6 010 O

ie, {8} = 1l = . as
w[ |11 172 1P]]a;g
6,] |0 1 21 3?%||a,

a;) 100 07 (w 14 0 3% 2 |(w

o Jaz| |01 0 0 o, _ 1 o 1 -21® 172 ]]6,

as[ |10 12 B w[ 3*-2%0 0 3* -2||w

a,] [0 1 20 3?%| |6, 0 0 -1° 12|16,
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! 0 0 0]
o 1 o0 o™
_|:3 2 3 16
121 12 0 ||lw
2 1 =2 11lg,
L2232
0w at a,% azx% a,x°
(1 0 0 0]
" 03 12 g 01 :1
_ 2 3% =[1x 3|l = = =31
—[1XX X] 03 [ ] |2 | |2 | W2
2 1 -2 1 0
ay 13 72 3 2 2
LI | | <]
wy
x> 2x3 2x% x3 3x® 2x2 x> X% |6,
=|1- s AN AT A
R I O N N N S A
0,
=[Ny N N3 N,] {5}, =[N] {6},
where [N]=[N; Ny N3 Ngj
x? . 2x° 2x* X
and N1=1‘|L2+|i3 N2=X-|—X+T—z +(513)
o328 x? X3
W T Nt

Variation of these function is shownin Fig. 5.6 (b) (Note that at node 1, N,=1,

N, _, Ny _ 0Ny
ax "ox ax

N,= N,= N=0, and =N _ 0 similarly at node 2,
OX
ONy _ N, _ON; _ o 0N,

=N, =N, =0 R =tand =507 = %~ ox ox

Example5.6: Determinethe shapefunctionsfor the Constant Strain Triangle (CST). Use polynomial functions.

Solution: Figure 5.7 shows atypical CST element. Let the nodal variablesbe u,, u,, u,, v,, v, and v, i.e,

1 720 T3 Y1 T2



66 Finite Element Analysis

3 (X, ¥s)

2 (X, ¥2)

1 (% y1)

Fig. 5.7

{5}T: [u U Uz vy v, ]
From the consideration of compatibility and completeness the following displacement model is selected
u=a;+a,x +azy
V=0a,+05X+agy ...(5.14)
U ur at a,xt azy
Uy =010 % td3Y;
U3 =01 t0 X3 +03Y3

U 1 x5 yjo
e, Uy r =11 X Y |402
Ug 1 X5 Y303

a, X yi||w
Oaar=11 % ¥ [

as 1 X3 Y3 (W

1 x5 v 1 1 1
Now 1 X Y| =X X X3 =2A
1 x3 vy Yi Y2 Y3
Where A isthe area of triangle with vertices at (x,, y,), (X,, ¥,) and (X,, y,) i.e., the area of the element.

.
a, XY= X3Y2 Yo Yz X3 —X Uy
U qa; 270\ X3Y1 = XYz Yz~ Y1 X —X3 U,
as X1Yo = XY Y1=Y X=X Uz
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1 a b ¢ Uy 1 a 8 az||U
275\ a b c U, =ﬂ bl bz b3 u,
a; by ¢ Us G & GJU
where a=XY,—XY, a,=XY, =X Y, L=X Y, %Y,
blzyz_ys b2:y3—y1 bszyl_yz
C =X=X% C,=X =X G =X, =X,
same as used in deriving natural coordinates.
Uw af a,x agzy
a, 1 g ad az| (Y
=[1 x y]ya,p=[1 x Y]ﬁ b b, by,
as G & G (U3

where

and

Similarly

O I N | L)

U
=|:al+b1X+cly pthx+cy a+hx +03Y} U

2A 2A 2A
Us
Uy
=[Ny N, Ng]qu,p =[N] {3},
Us
[N] =[Ny Nz Ng]
_atbhx+cy _a,+tbhx+cy _ag+tbyx+cy
N, = N, = Ny ==2—=—3=
1 2A 2 2A and N 2A
Vi
v=[N; N, N;]{v,
V3
U
u,

...(5.15)

...(5.16)
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Shape Functions In Terms of Natural Coordinate Systems

Using polynomial functions and natural coordinate systems, shape functions can be derived easily. This
approach makes it possible to find shape functions for more elements. This approach isillustrated with few
standard cases below:

Example 5.7: For atwo noded bar element, determine the shape functions. Use natural coordinate system.
Solution: Asthere are only two nodal valuesin this case, only linear function in natural coordinates are to be
taken. Fig. 5.8 shown the typical element. Thus

P (L. L)

on

o e
inon
o

N
o P

Fig. 5.8

a
u=a; Ly +a, L= L) [al} ..(5.17)
2

01

o fok=lo 3 i ile 0

W 1 0||a, i
g = a [Sincel,=1andL,=0anodelandL, =0andL,=1atnode?2]
2

o

el 96

Since u = N1 { } by definition of shape function

O N, =L andN,=L,

Example 5.8: Derive the expression for shape function for atwo noded bar element taking natural coordinate
& asvarying from-1to 1.

Solution: The typical bar element in the natural coordinate ¢ varying from—1to 1isshownin Fig. 5.9 (a).
Since there are only two nodal values, alinear polynomial isto be selected. Let displacement at any point

P(¢) be
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o=
oN

1
=

0=-1 0=0 O

PEINEN

N, —>»
Fig. 5.9 Variation of shape function in bar element

u=a;+ayé
i E]{al} ...(5.18)

a,

u 1 -1)|a
{1}=[ }{al} Since £ = -1 atnodeland & =1 at node 2

2

RN
e R I R | W
0w nalel-nall ]

e AR I )

1-¢

where N, :T and N, =

1+< .(5.19)

Variation of shape functionsis shown in Fig. 5.9 (b).

Example 5.9: Determine the shape functions for a three noded bar element with natural coordinate system as
shown in Fig. 5.10
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0=-1 a
G
1

1
o
O
1
=

w®
N O
[N
w

P

oN

N, —»
Fig. 5.10 \Variation of shape functions in 3 noded bar element

Solution: In this case there are three nodal unknowns. Hence a polynomial with 3 generalized coordinates as
shown below is selected

U= ay+ayf a

...(5.20)
U 1 -1 1o,
0 {o}z =1 1 1|ia,
Ug 1 0 0f|a;
Since §;, =-1,§, =1and ;=0
a,) 1 -1 1] [y
a,b=|1 1 1| {u,
aj 1 0O Ug
o 1 -1
= 0 -1 -1| {5
0+1(-1) +1(-1) el
2 0 2
0o -1 17 00 2
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a,
Now, u=a,+a,¢& +013§2=[1E 62] a
as
00 2 I 2
=111 o|{a), {E;‘t 5+2€ 1-¢&%|{a},
-2
-|3ete- 1)§(f+1)1 e,

[N: N, Ng]{a}, .(5.21)

1 1
where N, =2 E(E-1),N, = E(E +1), Ny =1 -¢?
The variation of the shape functions are as shown in Fig. 5.10 (b).

Example 5.10: Determine the shape functions for a Constant Strain Triangular (CST) element in terms of
natural coordinate systems.

Solution: Let the natural coordinatesof nodes 1,2,3bel,, L,, L, and shapefunctionsbeN,, N, N,. Thetypical
CST element is shown in Fig. 5.11 (a). Since the CST element is a linear displacement model, let the
displacement function be

y
A
s 3
2 2
1
1 1
> X
(a) Typical CST element (b) Variation of N1
Fig. 5.11
u=a,L +a,L, +asl, ...(5.22)
a;

=[L1 L, Ls] a,
as
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U 1 0 0ffa,
O4qu,»=/0 1 0|40,
Ug 0 0 1] |0,

Since the natural coordinates of node 1,2,3 are (1,0,0), (0,1,0) and (0,0,1) respectively.

1

10 0 (uw) [1 0 0]y
{a}={0 1 0| {u,r=|0 1 0|4,
00 1| |u] |0 0 1]]u
a, 100 U
Hence u=[L L, Liasr=[L L, Lg]|0 1 0|y,
asj 0 0 1] |u;
U U
=[L L Lg]qup =[Ny N, NgJ<u,
Us Us

WhereN, =L, N,=L,andN,=L,
Similarly we can show,

V=LV + LV, + Vs = Ny, + Nypv, + Ngvg

Vi
=[N1 N, N3] \Z
V3

g R R L

whereN, =L, N,=L,and N, =L, variation of N, isshown in Fig. 5.11 (b).

..(5.23)

Example5.11: Determinethe shapefunctionfor Linear Strain Triangular (L ST) element. Use natural coordinate

system.
Solution: Figure 5.12 (a) showsthetypical LST element.

As there are three nodes along any side, it can be easily seen that displacement varies in the quadratic
form (one order higher than the variation of strain). Asthere are six nodal valueswe haveto pick apolynomial
with six constants. Taking all the quadratic termsin natural coordinate system, we can select shape function

as.

uza L2 +a, 5 +asl5 +a, 4L, +agl, Ly +a gLsly

..(5.24)
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(a) Typical LST element (b) Variation of N,

Fig. 5.12
1 0 0 0 0 O]
Uy 01 0 0 0 0|9
) 0 01 0 0 0ff9
Dus_&loiooas
ul 14 4 4 o
4ollolo4
s 42 "3 |[%
) |1 g1 g o Lflde
L 4 4 4]

Shape Functions

(c) Variation of N,

73

since natural coordinates at nodes 1 to 6 are (1,0,0,), (0,1,0), (0,0,1), ( ¥, ¥, 0), (0, ¥2, ¥2) and (¥, 0, ¥2)
respectively. Then, we have

{ul, =[Al{a}
where { u} _ isthe vector of nodal displacementsin x directions, [A] isthe matrix shown in the above equation

and {a} isthe vector of generalized coordinates (constants in polynomial)

1. 0 0 000
0 1 0000
[A]-1=°° 1 000
-1 -1 0 400
0 -1 -1 040
-1 0 -1 0 0 4

-1
{a} =[A]"{u},
and we have started with

u=a;l2 +a,l3 +a5l3 +a 4L, +asloLs 4o glsly
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=[Li L% L% L L, Ly, Ly Lg Ll]

1 0 0 00O
0 1L 0 0O0O
0 01 00O
=2 12L L, L, L, L, L
[123122331]_1_10400
0 -1 -1 0 40
-1 0 -1 0 0 4

=[(L§ - Ll - L) (13 - Ll —Lobg) (13 - Lobs - Lol ) 4L, ,4L2L3,4L3L1] {u},

=[N; N; N3 N; Ng Ng]{u},

where Ny = L2 - LjL, - Lsly, N, =13 - 4L, —L,Ls, N5 =L3
N,=4LL, N =4LL andN,=4L L,
Now, N, = L2 - L, — LsLy,
= L1 (Ll_Lz_Ls) _
=L, [L,-(A-L)]sinceL, +L,+L,=1
=L, (2L, - 1)

S|m||al’|y N2 = L2(2L2 _1)

and N3 = L3(2L3 _1)
Similarly it can be proved that
v =[Ny N, N3 N, Ng Ng]{v}

o {=[5 v

where {o}

e

e

_L2L3 _L3L1

=[uy Up U3 Uy Us Ug Vy Vy V3 Vg Vg V)

..(5.24)
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and [N]=[N; N, N3 N, N5 Ng] {0},
N, =L (2L, -1);N,=L,(2L,—-1); N,=L,(2L,—-1); N,=4L L,
N,=4L L, and N, =4L.L,
Variation of N, and N, are shown in Fig. 5.12 (b).
Example5.12: Determinethe shape functionsfor 4 noded rectangular elements. Use natural coordinate system.
Solution: The typical 4 noded rectangular element is shown in Fig. 5.13.

y
A
4(-1,1) E 3(1,1)
_f © o)
b
b
C; 9
1(-1,-1) 2(1,-1)
e

Fig. 5.13 Typical 4 noded rectangular element

Taking the centroid of the rectangle as origin and é and n as natural coordinates, we have

=%

andl]=y_yc
a

b
where 2a x 2b is the size of the element as shown in Fig. 5.13 and x , y_ are the coordinates of the origin.

We need a polynomial in two dimension with 4 constants. Such polynomial is obtained by dropping &2
and n? termsin second degree polynomial. Such polynomial maintains geometric isotropy also. Thus,
Uu=aq, +a,é +ag3n +a £n ...(5.25)

We=1u171 1 1 1)),
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a,) 1 -1 -1 17" [y

az[ |11 1 1] |u

It can be shown that

N N

(A" =

BN N N

| |
N N N Y N
N U IR
NI NI

0 & af a,& agt agn

1111

4 4 4 4

! 1 1 1 1

_ az| _ 4 4 4 4
[1&nén] a,(Z1 &0 ] 10111 {u}e

a, 4 4 4 4

111 1

L4 4 4 4]

_|2=9a=n) @+8)@-n) @=4)am) L)) .,
4 e

4 4 4

[Ny N, N3 Ng]{u},

[N]{u}.

where

o090 | @eHon) | @E)m) | (@E) )
4 4 4 4

Inshort N, to N, may be written as

Ni=%(1+ffi)(1+nni) fori=1,2 3and 4 ...(5.26)
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Vi
L Vo
Similarly v=[Ny Ny N3 N, v
3
Va

Note: N, = 1 at nodei and is zero at all other nodes.

Example 5.13: Determine the shape function for quadratic rectangular element shown in Fig. 5.14

y
A O
A
4 (_lv 1) 7, (0, 1) 3 (11 1)
_f @ < )
b
AL 6 (1, 0)
T © 8(-1,0) & »
b
—L G = )
1(-1,-1) 5(0,-1) 2(1,-1)
|<— a —>|<— a
0 » X

Fig. 5.14 Typical quadratic rectangular element
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Solution: There are 8 nodal values for u and 8 for v. Hence the displacement function is to be selected with
only 8 constant. The polynomial has to maintain geometric isotropy also. This may be obtained by dropping

&% and n® terms from complete 3rd order polynomial. Thus,

uza,+a,f +a.n +a ftadn w g’ &R a &y 2 ...(5.27)
u) 1 -1 111 1 -1 -)a,
U, 11 -11-11-11jja,
ul |11 1111 1 1||as
Uy, 1-111-111 -1jja,
We=1u(7]1 0 100 1 0 o0 =[Al{a}
Us as
Wl [1 1 0100 0 0flag
w| |10 100 10 0fla,
W) |1 -1 0100 0 0flag
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or {a} = [A_l] {u},
It may be shown that,

-1 -1 -1 14 2 2 2 2]

0O 0 0O O 0O 2 0 -2

0O 0 0 020 2 O

[A]_l _1 11 1 1 -2 0 2 0

41 -1 1 -1 0 0 O O

11 1 1 0 -2 0 -2

-1 -11 1 2 0 -2 0
-1 1 1 -1 0 2 0 2]

But,uz[lfnfz nn*énén 2]@}

[1€n &2 n2eh & 2] (A" ul,

SarOEen)E +n -3, @ -6 m)(E 0 -1,

Sa+ -8 -1, @+ ) ),
S -8 +1. 50 - )i )| {uh,

=[N1 N2 N3 Ny N5 Ng Ny NS] {u}e

Where N, ...N, are as defined above.
In other words, for corner nodes (i = 1, 2, 3, 4)

N, =%(1+E€i)(1 +nn)EE +nn i -9

For mid side nodes,

If & =0 then N, =%(1_52)(1 +nn;) (i.e, for5,7)

If n; =0 then N, =%(1-r72)(1 +&&) (e, for6,8)

= [3a-9a-n)(< )€ 0 .50 €)@ n)E 7 D,

...(5.28)

...(5.29)

...(5.30)

..(5:31)



Shape Functions

Thus,

N O
Ul _|1xe 1x8]| Ue
v 0 N lv,
1x8 1x8
[Note: N, =1 at node i and is zero at all other nodes, variation is quadratic]

Example 5.14: Determine the shape functions for a tetrahedron element.
Solution: The typical tetrahedron is as shown in Fig. 5.15.

Fig. 5.15 Tetrahedron element

In Chapter 4, we have seen that the natural coordinates for such element are volume coordinates

Where L, = Natural coordinates

79

V, = Volume of sub tetrahedron formed by the point and the nodes except ith and V = Volume of the

tetrahedron
O Natural coordinates for the node point 1, 2, 3 and 4 are
1(1,0,0,0), 2(0,1,0,0), 3(0,0,1,0) and 4(0,0,0,1)
Let the displacement in x direction at any point P in the element be

u=a,L, +a,L, +asL; +a,L, ...(5.32)
10 0 O] fa,
010 0||a,
0 jup=
tuls 00 1 0f|as
00 0 1||a,

a;) [1 00 ot 1000
a,] |0 100 o100
D g =lo 0 1 o] MeT|o 0 1 ofiUe

3
a,] |0 001 0001
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Uw oL a,Li+ aslst a,l,

a, 1000
a 100

=[L1 L, Ls L4] 02 =[L1 L, Ls L4] 0010 {u}e
a, 0001

=[L L, Ly Ly]{u}, =[Ny Ny N3 N,]{u}, =[N]{u},

whereN, =L ,N,=L,,N,=L,andN, =L, ...(5.34)
Similarly for displacement v and w, we get

v=[N]{v},andw=[N] {w},

ul] [N 0 o
1x4 1x4 1x4

vi=|o N o0 [{5)
1x4  1x4  1x4 €
0 0O N
1x4 1x4 1x4
T _
where {0}, =[uw Uy ug ug Vi Vo vz v W oWy W W]

Note: N, = 1 at nodei and is zero at all other nodes. Variation islinear.

Example 5.15: Explain the method of finding shape function for a hexahedral element.
Solution: Thetypica element selected isshown in Fig. 5.16. The natural coordinates of various nodal pointsare

8 7

1 2

Fig. 5.16 Typical hexahedron element

1(1,-1,-1) 2(1,1,-1) 31,11 4(1,-1,1)
5(-1,-1,-1) 6(-1,1,-1) 71,11 8(-1,-1,1)
There are only eight nodal values for defining displacement inside the element. Hence polynomial with
8 constantsis to be selected for shape function. Keeping in view that geometric isotropy is to be maintained
the following polynomial is selected.
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uza,+af vaq +vaf waén wgl e o &yl ...(5.35)
a,
e, =[1&nd & ni & énd |4
ag
M1 -1 -1-11 1 1](a,
11 -1 1 -1 -1 -}|la,
11 1 1 1 1 1]las
11 -1 1 -1 -1 1 -|la,
0 ful= =[A
LU} 1-1-1-11 1 1 -1|]as [A] {ar}
1-11 -1 -1 -1 1 1]]ag
1-11 -11 -1 1 -la,
1 -1 -1 1 1 -1 44 1]|ag

0 {ak [A]{ul,

[A] can be found. Then
[LEnZé&nnl L&énd 14 }

=[1&n ¢ & ng & &g 1[A ™ {ub, =[N] {u},
where [N]=[1&nZ & nd 2n&ng (A"

=[N; N, N3 Ng N5 Ng N; Ng]
It will be found that

N =é(1+56i)(1+nni)(l <) ++(5:36)

< C

=/ 0 N 0 |[{3}

1x8 1x8 1x8

0O 0O N

1x8 1x8 1x8

} N O O
1x8 1x8 1x8

|

where {5}12 [Up oo Ug, vy o Vg, Wy . W]

=

Note: N, = 1 at nodei and is zero at all other nodes.
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5.5 FINDING SHAPE FUNCTIONS USING LAGRANGE POLYNOMIALS

If only continuity of basic unknown (displacement) is to be satisfied, Lagrange polynomials can be used to
derive shape functions. Lagrange polynomial in one dimension is defined by

L oX-X

L, (x) = m

k(%) m|:l| N, ...(5.37)
mzk

Thus, ifn=5and k=3,

(X = %) (X = %) (X = %4 ) (X = %)
(X3 = %) (Xg = X3) (X3 = %) (X3 = %)
Obviously equation 5.37 takes the value equal to zero at all points except at point k. At point kits value
isunity.
Thisis exactly the property required for the interpolation functions. Hence L agrange Polynomial can be
straight way used as shape functions for one dimensional problems. The following example illustrates it.

Ls(x) =

Example 5.16: Using Lagrange polynomial find shape functions for
(i) Two noded bar element
(if) Three noded bar element and
(iif) Five noded bar element
Plot the variation of shape functions.
Solution: (i) Two noded bar element
The typical two noded bar elementsis shownin Fig. 5.17 (a)
General Lagrange Polynomial is

o O
Typical element

i

Variation of N,

il

Variation of N,

@)

Fig. 5.17 (a) Two noded bar element

(X = %) (X = %) ... (x - xk_l)(x - Xk+1) (X =%n)
(% = %) (X% = %) - (Xk - Xk—l)(xk - Xk+1) (X =)

Now n = 2. Hencewhen k=1

Lk=
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X=X _ X =X :
O Nf Lg 2 =2 , N same as found earlier

XX X TX

X = X
N, =L, = L, same asfound earlier variation of N, and N, isalso shown in Fig. 5.17 (a).

X T X

(i) For Three Noded Element
n= 3. Hencewhenk =1,

Whenk=2

(x = ) (x = %)
(% = %) (X3 = %)

and N; =L =

3

o
ON

Typical 3 noded bar element

..

e I
Variation of N,

il

[t N I I o
Variation of N,

Variation of N,

Fig. 5.17 (contd) (b) Three noded bar element

The typical element and the variation of its shape functions are shown in Fig. 5.17 (b).

(iii) For Five Noded Element
n=5
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L o (X)) (x = %) (X =)
N =be = (X2 = %) (X2 = X3)(Xp = X4)(X; = Xs)
L2 x)x - ) (x = x) (x — %)
Na=lbe = (X3 = %) (X = %) (X3 = X4) (X5 = Xs)
_, - KX)o (x =) (x - x)
No=ba = (Xa = %) (X = %) (X4 = Xg)(Xg = Xs)

N, = L = (X)X %) (X x5)(x )

(X5 = %) (X5 = %) (% = Xg)(Xs = %)
The five noded bar element and variation of its shape functions are shown in Fig. 5.17 (c)

1 3 4 5
o

onN

(a) Typical = noded element

Variation of N,

Variation of N,

Variation of N,

Variation of Nj

=

Variation of N,

Fig. 5.17 (contd) (c) Typical 5 noded bar element

Lagrange Polynomial Approach for Two Dimensional Elements

Although Lagrangian interpolation functions are for only one dimension, we may extend the concept to two
and three dimensions by forming the product of the functions which hold good for the individual one
dimensional coordinate directionsi.e.,
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Ny = (&) Li(n) ...(5.39)
Thus for 4 noded rectangular element shown in Fig. 5.18,

Ny = Ly (&) Ly (n) = $§7¢ N-N4

El _62 r’l _,74
_(¢-9) Nt L nyi -1 =ta-g@-n)
-1-1-1-1 4
4(-1,1) E 3(1.1)
O Y
> O
G
L1 2(1,-1)

Fig. 5. 18 Typical 4 noded rectangular element

- =& n-n;
$ =61 12— N3

Ny = Ly (&) Ly (n)

E-(D -9 _(E+Ym -1 _1
1-(-) -1-1  (-4) FLr8-n)

- =&, n-n,
$3=84 N3~ 1N,

N3 = L3(&) Ls(n)

{+1 n+l  (1+&(1+n)

1-(-91-(-1 4

Ny = La(é) La(n) = ; __if ,;7__,371
4 3 14 1

_ (-9 n+1 _(E-Yn+Y _(1-&)(2+n)
—1-(1) 1-(-) -4 4

1+&&)(1+nn))

4
Example5.17: Using L agrange functions write shape functionsfor the nine noded rectangular element shown
inFig. 5.19.

Thus N, = (
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O
A
70 o8 9
-1,1) ©.1) 1,1)
4O G D » [
(-1, 0) 5(0, 0) 6
(1,0)
¢, O )
1 2 3
(-1,-1) (0,-1) (1,-1)

Fig. 5.19 Typical nine noded rectangular element

Solution: The natural coordinates of various nodes are as shown in the figure. For the C° continuity element
in two dimensions,

N; =L (&)L (n)
where L, refersto Langrangian function at nodei. In this case there are 3 nodes in each direction. Hence n =
3 in Lagrange function

L EE)EE) (-0 )
! (61 -&2)(E1 —€3) (M —n4)n1 —n7)

_ (-0 -Y) m-90-Y gE-1n0h -1

(-1-0(-1-2) (-1-0)(-1-13) ~ 4

(-8)E -&3) (n-ns)n —ns)

" (€2 =&1)(E2 —€3) (M2 —ns)(n2 —ns)
_(E+YE-) m-0m -y _(E+9E -k -1
(0+1(0-1 (-1-0)(-1 -1 (-2)
N, = (£-¢)E -¢2) (n-ne)n —ny)

(63 -¢1)(E5 —&2) (N3 —n6)ns —ny)

E+YE-0 -0 -1 (E+1& nih -1
1+1(1-0) (-1-0)(1-1) 4

(£ -45)(€ ~&6) (n=m)(n -n7)
(54 _55)(54 ‘56) (’74 _’71)(’74 _’77)

N, =
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_ (E-09¢-) M+ -1 &€ -1 +)@m -1
(-1-0)(-1-1) (0+1(0-1) = -2

_ (£-8,)€ -¢6) (n1-n2)n —ns)
° (55 _54)(55 ‘56) (’75 _’72)(’75 _’78)

_E+DE-)m+D0 - (£+1(E - +D( -
(0+3(0-1 (0+1(0-12) 1

_ (£-¢4)E -¢5) (n-ns)n —no)
¢ (§6 —&4)(&6 —¢5) (N6 —N3)(Ns —N o)

_E+DE-09 +Y)0n -1 _(E+DE (n +1(n - )
(1+1@1-0 (0+1(0-1 - -2
_ (f 58)(6 5) n- ’71)(’7 ’74)

(
! (57 &8)(E7 =&9) (N7 —n1)(n7 —n4)

_ (E-0¢-9) n+00h -0 &E-1@n +n
(-1-0(-1-1) (1+1(1-0) 4

_ (£-¢7)€ =) (n-n2)(n —ns)
s (és —€7)(€s —€9) (Ng —N2)(Ns —N5)

_E+YE-Y 1+ -0 _(E+1)(E -1 +D)()
(0+1(0-1) (1+(-0) ~ -2

_ (£-87)€ -¢s) (n-ns)n -ns)
° (§9 =&7)(Eg —&5) (Mo —N3)(Ng —N6)

_(E+3E-0) (1 + D0 ~0) _(£+1¢ (7 + 1)
(1+1(1-0) (1+1(1-0) — 4

Thus in this case, for corner nodes,

N; =%En(€ +&)n +ny) ..(5.42)

For nodes 2 and 8 where £ = 0;

(E+9E -9 nh +n)

N =
| -2
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For nodes 4 and 6, where n; = 0

= 28) 1 -00 +

and for central node,

(€+9E -9 (n+90 -9
4

5

Example 5.18: Using Langrange functions, derive shape function for hexahedron (brick) element.
Solution: Typical hexahedron element is shown in Fig. 5.20.
The coordinates for various nodal points are
1(3,-1,-1),2(4,1,-1),3(1,1,1),4(1,-1,1),5(-1,-1,-1),6(-1,1,-1),7(-1,1,1),8(-1,-1, 1)
In general, shape function by Lagrange function for three dimensional caseis given by

Ni =L(é) L(n) LE)

Fig. 5.20 Typical hexahedron element

&) n-n, (-¢e _ (E+D0-DC -1 _(€+D -DE -1
r §1-& m—ny, {1-¢, (1+1(-1-1)(-1-1) 8

Ny = Lp(é) L(n) L)

(€-¢&s) (n—-ny) ((-y)
(&2 —&6) (N2 —n1) ({2 -45)
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(E+Dn+HE€ -y _€+Y0 +H€ -9

1+D1+1(-1-1) -8

N3 = L3(¢) Ls(n) Ls(¢)

2(5_57) n-n, (-4,
$3=67 N3—Ny (3¢,

_E+1n+1 +1_(E+ Y0+ +Y
T1+11+11+1 8

_ _é-¢é n-ny (-,
N, =L L L) =
4 4(5) 4(’7) 4(() E =y N =1 a0,
_E+1n-17+1_(E+)(n-HE +
1+1-1-11+1 -8
N5 = L5 (&) Ls(n) Ls(C)
_(€-&) n-ne 7-¢s _(E-Yn-12-1_(-9(n-9€ -9
¢5=¢1 Ns—Ng {5-{g -1-1-1-1-1-1 -8
Ng = Ls (&) Le(n7) Le(()
_é-& n-ns {-¢; _&-1n+17-1_({-J+1E -1
§6-&, Ng—Ns {6-{7 -1-11+1-1-1 8
N, = L7 (&) Ly(n) L)
_&-& n-ng {-{s _E-1n+10+1_({-D+DE +1)
§,-&3n,-nNg {g-{s -1-11+11+1 -8

Ng = Lg() Lg(n) Ls(d)
_&-&sn-n; {-¢s _(E-Ym-9+1_(-Y(n -YE +9)

ég—&4 Ng— N7 {g3-(5 -1-1-1-11+1 8
In general it may be noted that,

M:%a+&ga+mg(mﬁﬂ ..(5.42)

5.6 SHAPE FUNCTIONS FOR SERENDIPITY FAMILY ELEMENTS

Figure 5.21 shows Serendipity family elements. These elements may be called as boundary node family
elements aso. In these elements nodes are only on the boundaries. Zienkiewcz called them as ‘ Serendip
family’ elements by referring to the famous princess of Serendip noted for chance discoveries. The terms
linear, quadratic, cubic and quartic are used since the variation of shape functions about aboundary is of that
order. The shape functions are found from the consideration that Ni = 1 for ith node and is zero when referred
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to any other node. Discovery of these elements clubbed with isoparametric concept (explained in ch.13) has
made major break through in the finite element analysis. In this article derivation of shape functions for this
family of elementsis presented, through examples.

D q
o ®
(a) Linear (b) Quadratic
@ < © S @ © ©
q q
D q
g D q
(/ O O Ya) (} O O
(c) Cubic (d) Quartic

Fig. 5.21 Serendipity family elements

Example 5.19: Using * serendipity concept’ derive shape functions for 4 noded rectangular element.
Solution: Figure 5.22 shows the typical element in natural coordinate system.

0
4(-1,1) A O=1 3(1,1)
G Q
001
0 » [
C; )
1(-1,-1) 2(1,-1)

Fig. 5.22 Typical serendipity linear element

N, hasto satisfy the conditions
(@adong =1, N =0.
(b)aong n =1, N, =0

and (@aé=-1, n=-1N-=L1
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Hence let

N; = C(1-€)(1-n), where Cisarbitrary constant.

Conditions (a) and (b) are satisfied.
Condition (c) gives,

1:C@+Da+DmC:%

QN 179a-n)
4
On the same lines we can get,

N, = (EFOE=n)

4
N, = PO+

4
o N, =0 08)

These are same as given in equations 5.26 and 5.40, which were derived from different approaches.

Example 5.20: Using serendipity concept find shape functions for quadratic serendipity family element.
Solution: Figure 5.23 shows atypical element of thistype.

0
. 4 . DmoDo
4 (—l, 1) \‘\\ 7 6 1
© ,L‘}‘\( ) ©3(1,1)
N oooom o
8 (-1, 0V 0 /,’}Gﬂ 5 g) O
N e ooo @ o
& e O
1(-1,-1) 2(1,-1)
75040 “gmooo

Fig. 5.23 Typical serendipity quadratic element

The conditions to be satisfied by N, are,
(a) dongline £ =1, N, =0
(b) dongline n =1,

(c) aong line 5-8,

N, =0
N, =0

91
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i.e, é+n+1=0.
(dAté=-1andn=-1,N=1
Hence let
Ny =C(L-&)(L-n)L+& +n)
It satisfies the requirements a, b, c. In other wordsit ensuesN, =0 at nodes 2, 3, ... 8.
From condition (d),

1=CL+1)(1+1)(1-1-1) OC=- %

O For the corner node

(1-82-n)1+& +n)

N, = - 2
Similarly we can show that
N, = (LFEA-n@=& +n)
, =
4
N, = (1A +n)A-¢ -n)
3=
4
and N, = -1 E+mEA+E =)

4
For mid-side node 5, the conditions to be satisfied are

(@Along §=1 N, =0

(b)Along n =1 N,=0

(cAlong § =-1 N,=0

(d) Atnode5where ¢ =0,n = -1, N,=1
O Let N5 =C(1-¢&)(1-n)(1 +¢)

This form satisfies N, = 0 at all nodes other than node 5. From the condition ‘d” we get,
1=C(1-0)(1+1)(1+0)

OG 1
2
1-&%)1-n
INe S @ o (—l()
Similarly it may be shown that
N, = (L1+9-n?) ...(5.443)

2
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1-&%)1
N, = [t-&)arm ...(5.44b)
2
and N _Lln) (5.44c)
. 5 ..(5.

Example 5.21: Determine the shape functions for cubic serendipity family element.
Solution: Typical element is shown in Fig. 5.24. Shape functions for corner nodes:
N, = O for all nodes except 1 and is 1 for node 1.

N, = Oissatisfied for nodes 2,7, 8,3if 1-& =0
N, = Oissatisfied for nodes 3, 9, 10, 4if 1-n =0

O
A

T
]

Fig. 5.24 Cubic serendipity family element

v
[}

Thepoints 5, 6, 7, 8, 9, 10, 11, 12 lie on the circle shown in Figure. The radius of thiscircle

=0A
1’ 1smceA andO (0,0):E

O Theequation of thecircleis
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10
24 2——:0
& +n 3

Satisfies N, = 0 for nodes 5 to 12.

10
N =C(1-¢)(1 "7)(52 +n? ‘5) Satisfies N, = 0 for &l nodes except for node 1.

Fornode1 N, = 1.

But weknow &, =n; = -1

9
or C=3
32
9 10
- 9 2 2 10
0N o O o)fex 0t )

= 2 a-ga-n)]sle? +n?) 10}

Similarly it may be shown that
1

Nz = (1+ &) -n){9(g? +n?) -10}
N; = 3—12(1 +&)(1 +q){9(52 +n?) —10}
N = (1= §)(1-+n){9(g? +n?) -10]

For mid side node 5,
1-¢=0ensuresN,=0at nodes 2,7, 8, 3
1-n =0 ensuresN, =0 at nodes 3, 9, 10, 4
1+ ¢ =0 ensuresN, =0at nodes 4, 11, 12, 1.
1-3¢ =0 ensures N, = 0 at node 6.

DLletNs C(E §EF n)E E )

1
Atnode5, ¢ = —5,17 =-land N5 =1
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OF & il>< X E>< 2
3 3
9
e, C=—
32

0N S E n)E HE )

- (1= &)a-n)e-%)

9

Similarly, N 25(1‘52)(1_’7)(1"'35)

N, = %(1 - nz)(l +&)(1-3)

N, = %(1 S+ )L+ )
9

Ng = §(1 - &)1 +n)(1+%)

Nio :?92(1‘ 52)(1 +n)(1-%)

Nig :%(l‘nz)(l —§)(+3)

Nip = ?92(1 - ’72)(1 -§1-3)

5.7 HERMITE POLYNOMIALS AS SHAPE FUNCTIONS

Similar to Lagrangian functions for C° continuity elements, there are Hermite polynomials for ¢ continuity
elements. Hermite polynomial in one dimension is denoted as H"(x). It is apolynomial of order 2n + 1. Thus
HY(x) isafirst order polynomial which is cubic in x. H%(x) is a second order polynomial and is of 5th order.

The speciality of Hermite polynomialsistheir values and the values of their derivatives upto order n are
unity or zero at the end points of theinterval 0to 1. The elements of aset of Hermitian polynomial srepresenting

these properties may bewritten as Hp; (X) wheremisthe order of derivatives, i the node number and nisthe

order of the Hermitian function.
Toillustrateiit, let us take atwo noded beam element (refer Fig. 5.25) in which nodal unknowns are the

displacement w and the slope ow . Since the element has four degrees of freedom, we have to select the

polynomial with only 4 constantsi.e. the first order (cubic) Hermitian polynomials as shape function.
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) ol

"l

Fig. 5.25 Beam element with natural coordinated varying from zero to one

These are given as
Hoy(s) =1 - 35 +25°

Hi (9) = Is(s - 1)°
Hi(9) = (3 - 29

X=X _ X~—X
L=2 T andl=x-x%

Where s =
Xy = X% I

The displacement model for the beam element is

w=[N]{},
Wy
0
ie, w=[N; Ny Ng NJ47° ..(5.47)
W,
92
where 9= @
ox

Wy
ow _{le ON, N, 0N4} 6,

Then —
ox ox o0x oJx O0x | |W,

6,

We select Hermitian first order polynomial functions as shape functionsi.e.,

N; = Hgy(s) =1 - 3¢° +25°

N, = HL (s) =1s(s - 2)° ..(5.48)
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N3

My (9 = (s - 29

N4
Now it may be observed that, at node 1,
N,=1,N,=N,=N,=0

H (9) =1s*(s - 1)

and ON,; =0, JON, =1(E'N3 _ ON, -0
Js Js Js Js
Similarly at node 2,
N,=0,N,=0, N,=1,N,=0
ON,; _ ON, N, - 0and ON, -1
Js Js 0s Js

Thisis exactly the requirement of the shape functions. Hence first order Hermite functions are suitable

for beam element in which C! continuity is to be satisfied. If we select natural coordinate as shown in Fig.
5.26, it may be observed that

O=-1 0=0 O O=1
x=0 3 10 o2 > X
A c B
$=0 $=05 S s=1

Fig. 5.26 Beam element with natural coordinates & varying from -1 to 1

TTT
2
Substituting this in equation 5.47 we get, Hermite polynomial of first order as,

PC TZ(AP ~ AC) =2(s -05) = 25-1

2-3% +¢&°
Nl:H(%l:f
|
N, = Hlllz(l‘f -&? "'53)5

N3 = Hg, =%(2 +3% -8 ...(5.49)

N, = H, =:§(‘1 -& +&2 +53)

Hermitian shape functionsin two dimensions may be constructed as multiplication of Hermitian functions
inx and y directions. Thus,

N, = Hél(x) Hél(Y) N, = Hlll(x) Hlll(y)

N; = Héz(x) Héz(Y) N, = Hllz(x) Hllz(Y)
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5.8 CONSTRUCTION OF SHAPE FUNCTIONS
BY DEGRADING TECHNIQUE

In the problems in which stress concentration is quite high in some portion and its variation is low in some
other portion, astressanalyst prefersto use higher order elementsin the area of stress concentration and lower
order elementsin the other areas. Fig. 5.27 shows a case in which this has been done using L ST elements and
CST elements. In this problem left side portion is having stress variation fast. Hence L ST elements are used
while on theright hand side CST elements are used. When thisis done we come across few elementswhich do
not belong entirely to CST or LST category. In element No.5, we find there are five nodes while in element
No.7, there are four nodes. For these odd noded elements, we can find shape function by degrading higher
order (in this case LST) elements. This degrading technique isillustrated in this article.

o

Area of
stress
concentration

Fig. 5.27 CST and LST elements used in a problem

(i) Degrading Six Noded Triangular Element to Five Noded Triangular Element
Let thetypical 6 noded and 5 noded triangular elements be as shown in Fig. 5.28. Five noded element isto be
obtained by dropping node 6 from LST element. Now for LST element,

3 3

1 1

Fig. 5.28 Typical LST and 5-noded triangular elements

u= Z Niu = Njty + Nou, + Naug + Nau, +Ngls + NgUs ...(5.50)

where
N,=L (2L,-1) N,=L,(2L,-1) N,=L,(2L,-1)
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N,=4LL, N, =4LL, N,=4L.L,
In this case variation of displacement is quadratic along al the three sides of the triangle.
In case of five noded triangle, the variation along line 1-3 should belinear, sincethere are only two nodes
along thisline. Hence,
U + Ug

Ug =
6
2

Replacing u, by ug in equation 5.46, we get

+
u=Nju + Nou, + Nguz + Nyu, + Neus + NG(ul 5 u3j
N6 N6
= N1+7 W+ Npup + N3"’7 Uz + NaUy + NsUs ...(5.529)
5
= Z NiU |, for five noded triangular element.
1=1
= Nju; + Njyu, + Ngug + Nju, + Ngus ...(5.52b)

comparing equation 5.52a and 5.52b, we conclude,

4154

N
Nj= N, + 76 =L(2L -1) + = L, (2L, - 1+2L,)

= Ll[—l +2(1 - Lz)] sncel, +L,+L,=1= Ll[l_ 2L2]

+% = Lg[2L -1 +2L,]

= Lo[-1+2(1 - L,)] = Le[1 - 2L,]
N;= N, =4LL,
Ni= Ng = 4L, L,
(if) Degrading L ST element to 4-Noded Triangular Element

Let thetypical LST and 4-Noded triangular elements be as shown in Fig. 5.29.
Inthiscaseit ispossibleto get shape functionsfor 4-noded triangular element by degrading L ST element

from which nodes 5 and 6 are to be eliminated. If nodes 5 and 6 do not exist, the variation of displacements
along lines 2-3 and 1-3 should be linear. Thusin 4 noded triangle

]

u6:

U + U3 ,_ U + U3
and u5: A
2 2
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1 1
Fig. 5.29 Typical LST and 4 noded triangular element

Substituting these in equation 5.45, we get

+ +
u= Ny + Npup + Ngug + Ngu, + Ns(uz Usj + Ne(uj

=(Nl +,\;6jul +(N2 +,\;5ju2 +(N3 +% +l\;6ju3 + Ny,

But for 4 noded element,
U= Nju,+ Nju, + Nug+ Nju,
Comparing 5.52a and 5.52b, we get,

N 41,1
Ni:N1+76:|—1(2|—1‘1)+ ;l

= Ly[2L, -1+ 2Lg]

= Ll[—l +2(1- Lz)] ,sncel, +L,+L,=1= L1[1‘ 2L2]

L ALl

N
Ny = N, +75 =L, (2L, - 1) = L,[2L, -1+ 2L]

L[-1+2(1-L,)],sincel, + L,+ L,= 1= L,[1-2L]

N5 Ng ALl ALl
Nj= Ng+—2+—08 = | (2L, -1) + 238 231
3 3 2 2 3( 3 ) 2 2

= Lg[2L -1 +2L, +2L,]

= Lg[-1+2] sincelL, + L, + L,=1= L,

..(5.34a)

...(5.34b)

Example 5.22: By degrading technique develop shape function for the seven noded rectangular element

shown in Fig. 5.30 (b). Given that for eight noded element shown in Fig. 5.30 (a)

N; :%(1+§§i)(1 +nn;)&; +nn; —1) for nodes1, 2, 3and 4.
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N, = %(l - 62)(1 +nn;) for nodes5and 7

N; = E(l - nz)(l +&&;) for nodes 6 and 8
O O
A A
4 7 3 4 7 3
(C @ Q ® © Q
6 6
80 D> [ 8 D0
C S ) C S )
1 5 2 1 5 2
Fig. 5.30 (a) Eight noded element (b) Seven noded element
For eight nodded element,

Ny = (2= 8)(-n)( -n -1

N, = 4L+ )L -n)E -n -3

N, :%(1+E)(1 +n)(E +n -

Ne =5 (- L+n)(< +n -1

N5=%@-Eﬁﬂ-m

Ng = %(1 +&)(1-n?)

N7=%@-Eﬁﬂ+n)

_1. _n2
Ng = >(2-8)(L-n?)
For seven noded element, variation of displacement along the edge 14 is linear. Hence

101
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+
0w Nt Npugt Naugk Naugt Nsust NgUg+ Nyup+ NS(UlZLMj

=(N1+l\;8jul + Nau, + Njug +(N4 +l\;8ju4 + NsUs + Ngug + N7y

If the shape function for 7 noded element is N’ , then,
U= Nju, + Nju, + Njug + Nju, + Nyt + Ngug + N3,
comparing equation 5.54a and 5.54b, we conclude

N= Np# 22 = 2(1- 8 -n)(£ -0 -1 +5( €)1 77

= - -0 -1 +1m) = L= OL-n)()

Ni= N+ 22 = 2(L-9Len)(£ +n 1) +50 <)t =)

(1-&)@+n)(=< +n -1 +1 1)

Mk MR

(1= +n)(<)

Ni= Ng, Ni=Ng, Ni= N, .

QUESTIONS

...(5.54a)

...(5.54b)

...(5.55)

1. Explain the term ‘ Shape Functions' . Why polynomial terms are preferred for shape functions in

finite element method ?
2. State and explain the convergence requirements of polynomial shape functions.

3. Explain the term ‘geometric isotropy / geometric Invariance'. Why polynomial shape functions
should satisfy these requirement ? How do you check a polynomial for this requirement ?

4. Determine the shape function for atwo noded bar element using
(i) Cartesian coordinate system
(if) Local coordinate system ranging from 1 to zero.
(iii) Loca coordinate system with range-1to 1.
5. Determine the shape function for a three noded bar element
(i) using polynomial formin local coordinates
(if) using Lagrangian functions.
Plot their shapes.



10.

11.

12.

13.
14.
15.
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Using generalized coordinate approach, determine shape functions for atwo noded beam element
and apply necessary checks.

Determine the shape functions for a CST element. Show that they are nothing but area coordinate

Explain the method of finding shape functionsfor LST element in terms of local coordinatesL, L,
andL,

Derive shape functions for a rectangular element for plane stress / plane strain analysis starting
with

(i) Polynomial form

(if) Lagrange functions
Apply the checks

Explain the method of finding shape function for 8 noded rectangular element to be used for plane
stress/plane strain problems.

Using Lagrange functions determine the shape function for 9 noded rectangular element. Plot the
variation of shape function of atypical corner node, atypical mid side node and the central node.

Explain the situations where you need 4 noded and 5 noded triangular elements. By degradation
technique derive the shape functions for them. Apply necessary checks.

Write short note on Hermite polynomial.
Write short note on Lagrange functions.
Using Lagrange functions derive the shape functions for a hexahedron element.
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Strain Displacement Matrix

6.1 INTRODUCTION

In the previous chapter we saw the shape function [N] which established the rel ationship between displacement
at any point in the element with nodal displacements of the element. In this chapter we establish therelationship
between strain at any point in the element with nodal displacement. We define strain displacement relation as

{e} =[B]. {3},

.(61)
Where {€} isstrain at any point in the element.

(9), is displacement vector of nodal values of the element
[B], is strain displacement matrix

In this article strain displacement matrix will be found for few standard cases.

6.2 STRAIN-DISPLACEMENT MATRIX FOR BAR ELEMENTS

Thereis only one strain component in such element i.e. £,. Thusfor bar elements [refer Fig. 6.1]

ou
{g}:gxza
_ou U
-S|
2
ou Uy
=—I|N, N
0'b<[ ! 2]{%}
1 2
€, ©
X, X, X X,
O0=-1 0=0 0 O=1
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But N, = X~ X N, = X | 1 (from equation 5.12)
N, 1 N, 1
0% - “and —2==
PRI L Yy
1 1w
O =r > =
e b 1YY
=[B]{q}
Thus [e] = 1[-1 1 .(62)

The above relationship may be derived using shape function in terms of natural coordinate ‘&' also

g =M _KH_0fL 0 U
e = o o o g NZ]{uZ}

where B/ S from equation 4.5
é | ( €q )
1- 1+
N, = TE and N, = 2 d (from equation 5.19)
0—=- — e —c = —
x 1 o 2 My T

_ 201 1w | 1
OieF ex .{ 2 JMﬁ[ﬂ 1{s}, =[Bl{e},
1
where [B] = l—[—l 1
6.3 STRAIN DISPLACEMENT MATRIX FOR CST ELEMENT

At any point inthe constant strain triangle element [refer Fig. 6.2] used for plane stressor plane strain problems,

there are three strain componentsi.e. £y, €y,Y . They are given by

Q
£, oX
_ _ o
{et=1¢y ¢ = ;y
Vvl |ou v
oy X
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y
A
—C—ple—— C, ——» C
3 Cyclic
X
b by Oy,0 ys
T b, Oys0 »
b, by OO y,
» X
Fig. 6.2
The displacement vector is
Uy
Uy
v o0 0 NN, Ny
Va
V3
a ]y Ny Ny
oX ox Xk X
% &y o
M ou) N N, Ny Ny N,
y x| |y ¥ & &K o
But in these elements (from equation 5.15 and 5.16)
Nl:al+b1X+Cly N2:a2+b2x+czy andN:a3+b3X+C3y
2A 2A 2A
by b, by 0 0 0O

ek 520 0 0 o & o {8 - (g5,

G, C C b b, by

Cyclic

¢, Ox30 x5

c, Ox;0 X3

c; Ox,0 X

p[2el2 o
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where
b b, by 0 0 O
O [BE 2—1A 0 0 0 ¢ ¢ G ...(6.3)
G C C b b, b
where b, =y,-vy, C, =X, —X,
b,=y,-Yy, C,=X —X,
b,=y, -V, C,=X,—X,

Noteb,, b,, b,and ¢, c,, c, arein cyclic order and they are constant for the triangle. Hence the strains are

constant within the element. Therefore the element is referred as constant strain triangle.

6.4 STRAIN DISPLACEMENT MATRIX FOR A BEAM ELEMENT

We know from constitutive law

{o}=[D] {¢}
From definition of strain displacement matrix
{e} =[8] {3}, ..(6.4)

0{oF [D] [B] {a},

In case of beam, stress resultant is the moment, which is given by the expression,
2
M = El d_ ...(6.5)
ox?
where v-displacement in y-direction.

Treating the stressresultant M similar to the stress g and curvature similar to strain, [D] and [£] matrix
are

[D] =EI ...(6.6)
*v
From equation 5.43, we have
v=[N] {o},

Vi

6

=[Ny Np Ny Ng] Vl

2

92

for the typical beam element shown in Fig. 6.3 and from equation 5.44,
N,=1-35"+2¢
=ls(s—1)?
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N3 =g (3-29
N, =1 (s—1)
Vi, q P Vs, EL
G ©
Xl XZ
g= X=X
s=0 s s=1 !
|A / LI
[~ d
Fig. 6.3
where s = u
|
2
2

92 | d°N;, 9°N, 9°N; 9°N,
—y['\'] {3}, ‘[ X ol aC ol {5}e=[B] {0},

als d°N, %N, 0°N; 9°N,
[ ]: 03(2 dxz 03(2 03(2

ON; _ds N, _ 10N
X o ds | os
5 N (1 o)( My Lo
M I o)\ ) 12 g2
o[ek 1[d°N, 9°N, J°Ng d°N,
12| o & & K

Now

=1 [-6 +125 1(6s -4) 6 125 I(6s -2)] ..(6.8)

=
QUESTIONS

Selecting interpolation function for abar element in its natural coordinates, find the strain matrix.
Selecting interpolation function for aCST element in its natural coordinates, find the strain matrix.
Determine the strain matrix for a beam element. Use shape functions in natural coordinates form.
Determine the natural coordinates (area coordinates) for a CST element. Assemble strain vector.
For a CST element shown in Fig. 6.4. Obtain the strain—displacement matrix. Assume Possion’s
ratio is zero and Y oung's modulus is constant.

a ks~ wbdheE



»
»

(2.5)

(4.3)

(E)

Fig. 6.4

Srain Displacement Matrix
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Assembling Stiffness
Equations—Direct Approach

7.1 INTRODUCTION

In assembling the element stiffness equation, [k] {0} = {F}, the first step is to derive the expression for

element stiffness property and nodal force vector. Thefirst method devel oped in thisfield wasdirect approach.
Latter on variational approach and Galerkin's weighted residual approaches developed. Direct approach is
the extension of matrix displacement approach. For onedimensional elementsthisisexactly sameasexplained
in Chapter 3. In fact no distinction was seen between matrix and finite element method. The analyststried to
extend the matrix method to two dimensiona problems also. The only element in which it could be done
successfully wasthe three noded triangular element (CST—element). This concept isexplained in this chapter.
L umped mass concept of assembling the nodal force vector is also presented.

7.2 ELEMENT STIFFNESS MATRIX FOR CST
ELEMENT BY DIRECT APPROACH

Turner wasfirst to suggest it and that was real starting point of FEM. Consider the typical element shownin
Fig. 7.1. It is subjected to constant stresses along its all the three edges. Let the constant stresses be

Oy, 0y, Ty = Ty Assembling stiffness matrix means finding nodal equivalent set of forces which are

statically equivalent to the constant stress field acting at the edges of the elements.

The equivalent nodal forcesto befound areF,, F,, F, ... F, asshowninFig. 7.2. We have six unknown
nodal forces, but only three equations of equilibrium. Hence it is not possible to determine F, F, ... F_in

termsof Oy, Oy, Ty, mathematically. Turner resolved the uniform stressdistribution into an equivalent force
system at midsides as shown in Fig. 7.3. Note sidei is the side opposite to nodei. With this notation,

Frax = Ox (Y3 = V2)t + Ty (X2 = X3)t

wheret is the thickness of the element.
Fry = Oy (X2 = Xg)t + T (Y3 — Y2t
Frox = —0x (y3 - yl)t T Ty (X3 - Xl)t

Finay = 0y (X3 = X))t = T,y (V3 — Y1)t (7.0
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»
»

yx
D)‘y

11,
L

“«— — —
O
=

B

T
1
T
T

"l"l"l"l'"i'"l"l"l"f'

§D<—

Fig. 7.1  Stress field in CST element

Fig. 7.2 Equivalent nodal forces

Fmax = Oy (yz - yl)t - Txy(xz - Xl)t

Frgy = 0y (X = X))t + T, (Yo —yy)t

After this Turner transferred half of mid side forces to nodes at the end of sides to get equivalent nodal
forces. Thus he got
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y
A

Fig. 7.3 Equivalent mid-side forces

F= % (Fm2x * Finax)
= 20, 0 W)t * (5 =20t +0, (32 )t T (6 =30
) %[Ux (Yt Y1+ Y2 =W1) +T09 (X =% % +X1)]
- %[Gx(yZ = ¥) * Ty (X3 = )]
F,= % (Frax + Finax)
_ %[Ux()@,‘ o) + Ty (% =X3) +04 (Y2 =V1) ~Tyy (X2 _Xl)]
- %[Gx (Y5~ Y1) * Ty (%4 = %3)]
Fy= 1 (Frax + Finx)

2

= %[Gx()@,‘ o) + Ty (Xo = X3) =0y (Y3 = Y1) +Tyy(Xs _Xl)]

t
- E[GX(yl_ Y2) + Ty (Xz = Xl)]



1

Fy= E (FmZy + FmSy)

Assembling Siffness Equations—Direct Approach

= %[ay (X3 = %) =Ty (Ys = ¥1) =0y (X2 =X1) +T (V2 ‘Y1)]

t
= E[Uy(xs‘ Xp) + Ty (¥ = y3)]

1

=3 (Fray * Firay)

= %[GV(XZ - X3) + Txy(yB -Y,) _Uy(xz -Xy) +Txy(Yz ‘Y1)]

t
=2Joy 0a6) 1 (v )]

Fo= % (Fray + Fnzy)

= %[oy (Xo= X3) + Ty (Y3 = ¥2) +0y (X3 =X) =Ty (Y3 —yl)]

t
= E[Gy (Xz - X)) + TXy(yl - yZ)]

Thus the force vector as derived by Turner is

whereb,, b,, b,, ¢, ¢, and c, have the expressions as used while deriving shape function expressions.

A L

e b=y,-y, b,=y,-y, b=y, -y,

C =X=% C=X =X G =X, =X,
_bl 0 Cl_
b, 0 ¢
But, % (?1 E
0 ¢ b
|0 ¢ by

oo of & &

G
C3

o
bl y
b, | L'
b |

=2A8['

113

.(7.2)

..(7.3)
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- {o}=[o]{e} = [D][E]{s},
We have got
{F}=52A[e]" [D][E]{o}, =[8] [o][8]t Als}, (74)
= [8]' [O][8] v {o},

whereV isthe volume
O{FF [k]{3},

where {} =[8]'[D][E] v = [ [&]" [D][E] v, --(7.5)
since [B] and [D] are constants.

7.3 NODAL LOADS BY DIRECT APPROACH

In the stiffness equation [k] {o} = {F}, the right hand side term {F} refers to the nodal forces. Generally,
while subdividing a structure, nodal locations are selected so as to coincide with the external forces applied.
This can be easily donein case of concentrated loads acting on the structure. But in case of distributed loads
like self weight, uniformly distributed load, uniformly varying load, we need a technique of transferring the
load asnodal loads. There are two proceduresfor it, namely direct procedure and variational approach. Inthis
chapter the direct procedure is dealt.

This procedure was first to be used in the finite element method. In this procedure classical structural
analysis background is utilized or aportion is assigned to each node and load on that region asthe nodal load.
The latter method is called as lumped load method.

Consider the self weight of the uniform bar element shown in Fig. 7.4. Half the bar length may be

g 041
_ 1 2

(b)

Fig. 7.4
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assumed to contribute to each node. Hence at each node vertical downward load is
_oA
2
Where p isunit weight of the material, A the cross sectional areaand | isthe length of the element.
In case of beam element subject to uniformly distributed load (refer Fig. 7.5(a);

(i) Lumped load procedure: half the region is assigned to each node as shown in Fig. 7.5(b). Its

wl
equivalent > istaken at the centre of gravity of the element as shown in Fig. 7.5(c). Then at the

2

wl wl
node, the forces are > and 5 Hence Lumped load vector is

{F}Tzﬂ'w_'zﬂ'_w_'z
2 8 2 8

W/unit length

w w
2 2

8

Fig. 7.5

(if) Classical Structural Analysis Approach: In case of beam the end reactions, for a fixed beam
[shownin Fig. 7.6.(a)] are

W e
2 M2
Hence the equivalent nodal loads are
wlow® o wl o wi®
2 12 2 12
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Y W/unit length

@

12
wl wl
2 2
(b)
wf ) { wi?
12 'i/ ? 12
wl wl
2 2
(c)
Fig. 7.6

1
(iii) In case of a CST element 3rd area may be assigned to each node and hence equivalent nodal

forceis 3_id the self weight as shown in Fig. 7.7

Fig. 7.7

For complex loading and elements this method may not be of much use. The distribution obtained in
lumped load approach may be one of the possible distribution. We cannot say confidently that the distribution
considered is exact.
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Because of difficulties and uncertainties associated with direct approach not much progress could be
made with direct approach. Thereal break through wasfound in finite element analysis only when variational

approach was discovered.
QUESTIONS

1. Derive stiffness matrix for a CST element by direct approach.
2. Differentiate between the terms ‘lumped loads' and consistent |oads.
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Assembling Stiffness
Equations—Galerkin’s Method,
Virtual Work Method

8.1 INTRODUCTION

Finite Element Analysisisaversatile method which isused for solving aset of differential equations specified
over aregion, the solution satisfying specified boundary conditions. In the solid mechanics we try to get the
displacements in a structure by solving the equations of equilibrium specified over the structure and the
displacements obtained are such that the specified support conditions and the values of loads are satisfied.
Galerkin has given amethod for solving such differential equationswhich can be used by the analysts of solid
mechanics, fluid mechanics, heat flow, electrical engineering. Galerkin's general method isbriefly explained
first and then its application in elasticity is presented. It will be found that in elasticity problems this method
turns out to be principle of virtual work.

8.2 GALERKIN’S METHOD

L et the governing differential equation on a specified region V be
L(u=P ...(8.1)
Where L is a differential operator on a basic unknown u. The value of u to be found has to satisfy
specified values on the boundary of the region. If wetake U as approximate solution, then we may get error
&(x) at apoint x and

e(x) = L(T) - P ..(82)

£(x) iscalled residual at point x. The solution sought revolve around setting the residual, relative to a
weighting function w, to zeroi.e. to get

ii;vvi(LU—P)dV =0 fori=1ton ...(8.3)
v

Depending upon the sel ection of weighting function, there can be different approaches. In the Galerkin’s
method the equation 8.3 is taken as,

iﬁw(Lu—P) =0 ..(84)
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where  isalso chosen from the basis function used for constructing approximate solution function u . Let

us= ZQ, G ...(85)

where Q isthe basic unknown vector and G, are basisfunctions. G, are usually polynomial in space coordinates
X, Y, z. Then in Galerkin’s method the weighting function @ istaken as

Q= i Y, G ...(8.6)

In the above equation ¢, are arbitrary, except at the points where boundary conditions are satisfied.
Since @ isconstructed similar tothat as u, Galerkin’smethod leadsto simplified method. Thusin Galerkin's

n
method we choose basis function G, and determine ¢, in u = Z Q G, tosatisfy j; (Lu) = PdV =0 where
=1 v

coefficient ¢, are arbitrary except at specified boundaries.

8.3 GALERKIN’S METHOD APPLIED TO ELASTICITY PROBLEMS

In case of three dimensional problemsin elasticity the equations of equilibrium are:

or
99y O e Ly —g ..(8.7) (Refer 2.2)
X N &
or,, N oo, N ory, +Y, =0
X & &
Jr, Ot

and

+ 4 90, +27,=0
X oy

The stresses {g} areinterms of displacements{u}. The displacements are arbitrary in the entire region
of structure except at specified boundaries and the solution has to see that specified |oad values are obtained,

wherever loading is existing. For simplicity we take two dimensional problem in elasticity and then extend
the results to three dimensional problems. In two dimensional elasticity, the equations of equilibrium is

LO’X + ery + Xy =0
ox
or Jdo
and — Y+ Y4y, =0 ...(8.8)
ox 5%

If X and Y_ are the surface forcesand o is the angle made by normal to surface with x-axis (refer Fig.
8.1), then from the equilibrium of the element we find,
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Vs ,“&= Normal to surface

o

;
S
l

B

<
<

Fig. 8.1 Two dimensionally stressed element

X, ACt =0, ABt +T, BCt

AB BC

i.e X.=0,— + T, —
S 7Xac YAC

=0,0080 +Tsna =0l +1,,m

where | and m are the direction cosines of normal to the surface.
Similarly, considering the equilibrium of the forces on the element iny direction, we get

Ys= Tyl +o,m
Thus the surfaces forces on the element are
Xs=0o,l +o,m
and Ys= Tyl +o,m ...(8.9)

Now consider the integral

5 7 o) B+ 5 e

where du and ¢v are the elemental displacementsinx and y directions. The above bounded integral is zero,

do o"'r or Jdo .
snce —* + —~ + X, =0 and — + —Y +Y, =0 (from equation 8.8). Thus,
0y ox oy

“ X —+X d]+ Xy _y Y a/dXdy—o ---8-10

Now we can expand the integral 8.10 using Green’ s theorem. According to Green' stheorem, if @(X,Y)

and ¢ (X,y) are continuous functions then their first and second partial derivatives also continuous,
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”[%%“L%% X dy = ”“{dw dw}d dy+J<t{d"Ul+ } ...(8.11)

Now let us consider the integration of the first term in equation 8.11

” PIx au dxdy

I

Assuming ¢ = g, %’j = gu and = 0, from Greens function we get

”‘%X du dx dy = —ﬂ CD)

Jdo
Similarly '[Wy ou dx dy can be found by taking

dxdy+'|.axl du ds

It leads to

” Y du dxdy = ”0 )dxdy+Jaymd/ds

on the same lines, we can get,
Ha;fy o dxdy = —H rxy% (6\/)dxdy+JTXyI & ds

and ”d;;W&JdXdy=-”Txygy(6u)+ r,, mouds

Hence equation 8.10 is equal to

Ao goree y00+r, S . 10

+J[0x| &u+0ym & + Tyl & + Ty m dlds

+”xb u dxdy+J Y, & dxdy =0
Regrouping the terms, we get,

- [Fog@ oy 200 + 1y 2l + 5 ) oy

+[[(xo @ +Y &) axdy + [(o] + Tymar ds+ [(zyl +o,m& ds=0 ..(8.12)
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Now consider the term
”(Xb du +Y, &v) dxdy inequation 8.12

X, isthe body force in x direction and &y is arbitrary (virtual) displacement in x direction. Similarly Y,
and py arethe body force and virtual displacementsin y directions. Hence the above term represents virtual
work done by the body forces.

Now consider the term,

J[(O'Xl + T, mdu+ (1l +o, m)d/] ds
from equation 8.9, we have Xg= 0ol + 1, m

and Ys= Tyl +o,m
Hence, J[(le + T, mdu+ (1l +o, m)d/] ds

= [[x.0u+Y, &7 ds .(813)

Thus the above expression represents the virtual work done by surface forces. Barring the first term the
other termsin equation 8.12, represents the virtual work done by external forces dueto virtual displacements
du and dv.

Now let us try to attach physical meaning to first term in equation 8.12. Consider the element of unit
thicknessshownin Fig. 8.2. Let avirtual displacement du be given to the element. Dotted position showsthe

element with virtual displacement. Hence work doneby 0, stressesare

:oxdy[du +%(6u)dx}—axdy dJ:o'X%(du)dxdy ...(8.14)

y
A

0, 0,02 0,)4,

e e

T
1
:
1
«— ——
1
1
1
1
1

[——dx——p!

0 » X

Fig. 8.2 Element with virtual displacement in n-direction
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It may be noted that due to virtual displacement du the changein strain d¢, isgiven by

[dj+£((6u)dx}—dj ,
o€, = = (du
x » )
Substituting it in equation 8.14, we get virtual work done by
o, stresses = g, o, dxdy ...(8.15)

Similarly it can be shown that the terms

[ay (% (&) dxdy and [[ 7, {;(a/) " :x(éu)} dxdy

i.e. 'Uay g, dxdy and Urxyéyxy dxdy,

represent the work doneby Oy and T,y stresses.

U Firsttermin equation 8.12 is

M = ”(ax de, + 0, 3, + T,y Gy) dxdy ...(8.16)

Thus the first term represents the work done by internal forces with negative sign. Therefore equation
8.12 may be looked as,

-0U +oWe=0
U = doWe ...(8.17)

where U is interna work done and W, external work done. Thus in elasticity problems Galerkin's method
turns out to be the principle of virtual work which may be stated as a defor mable body isin equilibrium
when thetotal work doneby external forcesisequal to thetotal work doneby internal for ces. Thework
done considered in the above derivation is called virtual, since the forces and deformations considered are not

related. The displacements'ou and 'évV arearbitrary. It may also be noted that the principle of virtual work
isindependent of the material properties.

Extention to Three Dimensional Problems

The principal of virtual work holds good for the three dimensional problems also. In this case

SW, =J'['[(xba; +Y, & +Z, &v)dV +'['[(xs 8 +Y, § +Z, %) ds ..(8.18)
\% S

where s is the surface on which forces are acting. The above expression in the matrix form is,

SW, = jjj{m}T [X}dv + ”{m}T{p}ds ...(8.19)

where [l =[a & &
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X =% Yo Z]
and {p}T = [Xs Ys ZS]
In three dimensional case, internal work expression is,

dJ:,U,[(GX 0g, + oy 6‘%,+ g, 0g + Ty 5K<y+ 1, 5)§Z + L 5;{2)dv
or au=[[[{eg" {0} ...(8.20)

where {56l =[5£x 05, 05 Yy K KZ]

T
and {o} =[ax g, 0, T, Ty, TZX]
From principal of virtual work,
M =W,
Example 8.1: Using virtual displacement principle, determine the forces developed in the three bar truss
shown in Fig. 8.3 (a).

A3 AZ
B = B = b
e e v
c c-

@

Fig. 8.3

Solution: Fig. 8.3 (a) shows the given truss. The length of various members are
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2 2
l,=—5 _=23094m | =2m I =
17 Cos30 2 3" Cos60

Total displacement of point D isuin x direction and v in y direction. The displacements u and v are

separated and shown in Figs 8.2 (b) and 8.3 (c) respectively. From it we can seethat total strainsin thevarious
members are

_ucos30+vsin30

£ = =0375u + 02165v (@)
23094
u
g,z UCOSE0=VSN30 _ 105, 02165v

4

Let a unit virtual displacement be given in x direction as shown in Fig. 8.4. Then due to du =1, the
strains introduced are,

Fig. 8.4

2'I.= ]'XC—OSSO = 0375
2.3094

oe5,=—==05

PN e

dey= %560 = 0125
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] Interna work done in amember when unit virtual displacement isintroduced in x direction is
& = ”J o, 3¢, dV

= EAL ¢, Og) since o,=Eg, andV=AL
Internal work donein the truss
=+, + Ay
= EA[2.3094 (0.375u + 0.2165v) 0.375 + 2 x 0.54 x 0.5 + 4 (0.125u — 0.2165v) 0.125]
= EA (0.88726u — 0.07924v)
work done by load W, = 0, since no displacement in'y direction. Equating internal work to external work,
we get
0.88726u = 0.07924v
0 u=0.0893v ...(b)
Now consider virtual work principle when unit virtual displacement is given to point D iny direction
dv = 1 Referring to Fig. 8.5, we can note virtual strainsin the members as,
A

Fig. 8.5

,_1xsin30

€= = 02165
23094

0g,=0

e, = —“5‘—4”60 = -01265
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0 Work done by internal forces
oU=ad,+dJ,+ d,
= EA[2.3094 (0.375u + 0.2165v) 0.2165 + 0 + 4 (0.125u — 0.2165v) (-0.2165)]

= EA (0.0792u + 0.2957v)
From equation (b) u= 0.0893v

08U EA03028V]
work done by external forces
O, =20%x1=20

Equating internal work to external work, we get

0.3028v EA =20
20 66.048
or V= =
0.3028EA EA
Thus v = M and u = 00893 v :@
EA EA

Oex 03754+ 02165~ M

EA
£, = 05U = 05 x 5898 _ 2949

EA EA

13562

£4= 01251 - 02165V =

OF Aoz AEer 26045kN

F, = AEg, = 2949kN Answer
F,=-13.562kN

Comments on Gelerkin’s Method

This is a method which can be applied to any problem involving solution of a set of equations subject to
specified boundary values. In mechanics of solidsit turns out to be virtual work method.

QUESTIONS

1. Write short note on Galerkin’s method.
2. Show that in elasticity problems Galerkin’s method turns out to be the principle of virtual work.

3. State and explain the principle of virtua work.
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Assembling Stiffness
Equations—Variational Method

9.1 INTRODUCTION

This method of assembling stiffness equations is widely used in elasticity problem. In calculus we know a
function has extreme valuewhenitsfirst derivative with respect to variablesis zero. Thefunction is maximum,
if the second derivativeisnegative and is minimum, if its second derivativeis positive. Thefirst derivative of
function of a function is called first variance. The function of a function is termed a functional and the
statement that the first variance of functional is zero is termed as first variance attains a stationary value. In
many engineering problems there are such functional, the first variance of which attain stationary values. In
elasticity problems potential energy of the body of the structureis such functional. In this chapter we will first
study general mathematical method of variational approach, then assembl e the expression for potential energy
in a deformable solid and derive principle of minimum potential energy. Few simple problems are solved to
explain the procedure. Then Raileigh-Ritz method isexplained, whichisuseful for complex structural problems,
encountered in finite element analysis. The general procedure of assembling stiffness matrix and load vector
using the principle of minimum potential energy after expressing potential energy asafunction with arbitrary
constant using Raileigh — Ritz method is presented. It may be noted that variational approach is possible only
if asuitable functional is available, otherwise the Galerkin’s method of weighted residual is to be used.

9.2 GENERAL VARIATIONAL METHOD IN ELASTICITY PROBLEMS

Lety beafunction of x. Then, F(y, y',y") isafunctional. Say our concernisto findy =y (x), such that the
first variance of

| =jF(y.y'.y")dX (9.1

X
is made stationary satisfying the boundary conditions
y(x) =y
and y(X%) =¥, ...(9.2)

Figure 9.1 shows atypical functiony =y (x). The continues line shows the exact function and dotted line
shows an approximate function. Sinceto start with we don’t know exact solutiony =y (X), we have approximate

solution y = y(X).
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T A
y(x
y
//’b;\\
| Y |
0 )I(1 X )‘(2 > X
Fig. 9.1
Then, 3, =y(x) = y(x). ...(9.3)
We areinterested in finding the solution with
o1 =0 ...(9.9)
B(oF _ oF oF
ie J oy + Loy + 2 g |dx=0 ...(9.5)
X1 dy dyl dy"
Let us now find integration of second and third terms by parts.
Xy Xy Xy
oF oF d( oF
—oydx=|— - | === ...(9.6
oy { 3y ov} | dx( dy,]éy (069
Xq XX
"t oF [oF ]
d —oy"dx= | —2ay' dx
ar] v ay" @ _dy" y | J dx(dy" ) y
1
X X2 X 9
F d | oF d F
|2 S| - —(d—,,)é’y + (d— Jydx ...(9.6b)
| 9y Iy, dx\ gy - dy, \ 9y

Hence substituting equation 9.6 in equation 9.5, we get

XI oF IF
_— - + —
oy dx dy

Xy

oF oF oF T T
- - - ! = ...(9.7
oo (s (57 - o] o [opr] =0 -
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Since gy isarbitrary, al the three terms in equation 9.7 should be zero. Thus we have

d_F - E d_F + i d_F =0 0.8a
dy dX dy' dXZ dyn ( . )

oF d(oF. [
H ay dx[ EY. )}éy} ...(9.80)

X

Xz
and {dF dy'} =0 ...(9.8¢)
dy"

X

Equation 9.8 (@) is known as Euler—L agrange equation. Equations 9.8 (b) and 9.8 (c) are known as
boundary conditions. To satisfy equation 9.8 (b).

oF d ( dF
3y(x)=0or d_y,_&[d_y,,jlatxl =0

Similarly at boundary x = X,,

JF d [ oF

gy ox|ay"
To satisfy equation 9.8 (c),
, oF
6y (X1)= 0 or Wlatx1 =0
and at X = X,,
) = oF -
dy' (%) =0 or dT/"lath =

The conditions like
dy(x) =0, 0dy(x;) =0

dy'(x)=0,and dy'(x,)=0 ...(9.9)

are known as kinematic boundary conditions. In solid mechanics they specify displacement requirement at
support points.

The conditions like

JF df odF
P ,, |atx1 =0
ay' dx\ay

oF _dfoF) g
gy dx\ay" ) A
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O ey =0 ad &
dyn 1

d_y,,latxz_

are known as natural boundary conditions. In solid mechanics, they specify force conditions like moment and
shear force conditions at supports.

Thus the first variance of the functional for stationary value yields Euler—Lagrange equation [equation
9.8(a)], kinematics boundary conditions[eguation. 9.9(a)] and natural boundary conditions[equation. 9.9(b)].
A finite element analyst who isinterested in solving a set of equations subject to aset of boundary valuesaim
at firstidentifying the functional which satisfy Euler—Lagrange equation and satisfies boundary val ues specified.
Then tries to solve Euler—L agrange equation.

In solid mechanicsit has been identified that total potential energy issuitablefunctional, thefirst variance
of whichyields equation of equilibrium satisfying the boundary conditions. Thisstatement isverified with the
following simple problems in solid mechanics.

Example 9.1: Show that the condition that first variance of total potential energy is stationary, is equivalent
to satisfying equilibrium equation and boundary conditions in case of

(i) Simply supported beam subjected to udl.
(if) Cantilever beam subjected to udl.
Solution: Figs 9.2 (a) and 9.2 (b) show the typical beams considered.

olunit length p/unit length

< I > < / »
X, =0 X, =1 x,=0 X, =1
@ (b)
Fig. 9.2
In beams, strain energy due to bending
L2
= M_ dx
2El
0
2
d?y
El —
= J dx
2El
0
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Potential energy due to load

O Total energy isgiven by

2
El ( d?y
h F=— —
where 2 (dsz py

From equation 9.8, we know that the first variance of J F dx is stationary, means

OF d (dF). d? (oF
T o | e | G |70 (@
dy dx|\ay' ) dx® |ay"
oF d (oF\[?
-2 =0 b
{dy' dx (dy" ﬂ % (b)
X
X2
and {‘3':" 6y'} =0 ©
ay %
In this problem we are trying
2
El (d?y
F=—|72
(5w
2
de:— p dF':Oandd_F:E|d_Z
ady ady ay" ox
%y

since y'=s —-
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Hence Euler—Lagrange equation (equation a) for the beamsiis,

9? %y
-p-0+—|E—|=0
P dxz[ dsz

. 'y
e, El — -p=0
ax* P

Thisis the well known equation of equilibrium in structural mechanics. Thus in case of beams Euler—
Lagrange equation yields equation of equilibrium. Now let us see whether boundary conditions are satisfied
or not.

Noting that y is exact solution and dy isthe difference between exact and approximate solution, we find
at supports

y =0 means oy =0
and y' =0 means dy' =0

In case of ssimply supported beam,

Atx=x

dy(%) = y(x1) =0 hence equation (b) is satisfied. From equation (c), we have

dF _ Eld%y _

—— =~ =M, where M ismoment.

dy dx
At x = x, we know moment is zero. Hence equation (c) is also satisfied.
Atx =X,

% (x;) = y(x;) =0
oF
and d_y,,l X=X, — M (XZ) =0

Thus the boundary conditions at x = x, are also satisfied. Hence the condition that first variance of total
potential energy to be stationary, satisfies Euler—Lagrange equation as well as the boundary conditions.

Consider the cantilever beam [refer Fig. 9.2(b)].
Atx=X,

Equation (b) is satisfied since dy(x,) = y(x;) = 0 and equation (c) is satisfied, since

%' (x)=y(x)=0

oF d [ JF —o
dy dx|ay"

. d d?y
ields, O-—|El—|=0
y dx( dsz

Atx:xz,
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ie, =2Y_o

i.e., shear force=0
We know at free end, shear forceis zero. Hence equation (c) is satisfied.

Thus, if potential energy isselected asasuitablefunction, itsfirst varianceis stationary, satisfiesequilibrium

equation as well as the boundary conditions.

9.3 POTENTIAL ENERGY IN ELASTIC BODIES

Potential energy isthe capacity to do thework by theforcesacting on deformable
bodies. The forces acting on a body may be classified as external forces and
internal forces. External forces are the applied loads while internal forces are
the stresses developed in the body. Hence the total potential energy is the sum
of internal and external potential energies. We will derive first the potential
energy in aspring which isuniaxially stressed member then we will derive the
expression for potential energy in athree dimensionally stressed body.

(a) Potential Energy in a Spring: Figure 9.3 shows a typical spring. Let its
stiffness (load per unit extension) be k and length L. Due to a force P let it
extend by u.

The load P moves down by distance u. Hence it looses its capacity to do
work by Pu. Hence the external potential energy in this case

Wp=-Pu ...(9.10)
When the load has reached equilibrium position after extension of spring
by u, the force in spring = ku. But when extension was zero the resisting force
O+ku _ ku
5

was also zero. Hence the average force during the extension is

Hence the energy stored in the spring due to straining,
= Average force x Extension

= 1 kuu = 1 ku?
2 2
0 Total Potential Energy in the Spring

1.2
MN==-ku - pu
5 p

Stiffness k

Fig. 9.3

...(9.12)

...(9.12)

(b) Potential Energy in a There Dimensional Body: Consider abody of volume V subjected to

(1) body forcesX,Y,,Z,inXx,y, zdirections.
(i) surfaceforces X, Y, Z, onsurface S

Let u, vand w be the displacement components. Then the potential energy of the external forces

W, = —jjj(xbu +Yy v +Z, w)aV —”(Xsu +Y,v +Zow)ds
\%

S

...(9.133)
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= _'['VU{U}T [Xp}av - 'LJ{U}T {Xs}ds ..(9.13b)
where {u" =[u v w]

X} =X % Z]

T
X} =[Xs ¥ Z]

To find the internal energy due to straining, let us consider one by one stress component. Figure 9.4

shows atypical element of sizedx x dy x dzsubjected to o, stresses and displacement in x-directions. The

work doneby o, stressesin the element

y
A
O
O, 0,0 C) d,
Y e
| |
DX<_L ; 0,
a4 | |
o d ——>
0 > X

Fig.9.4
d(du)
= 0, dydz| du +W dx |- o,dydzdu

d(du)
=0y Ix dXdde’Since%:gx

00 Thework doneby o, stressesintheelementis = g, de, dxdydz

Asthe strain increases from zero to the final value €, , the work stored as strain energy is
EX
= Jax de, du
0

In the three dimensional element, there are six stress components {J}T = [ax Oy 0, Ty Ty, TZX] .

Hence the total strain energy in the element
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2
Y X

£X &y £z yxy yyz
= Jaxﬁsx+‘[ay{sy+‘[azdsz+eryyxy+erzdyyz+‘[rzxdyzx av
0 0 0 0 0 0

Theintegrationisfrominitial to thefinal state of stress. Let U_bethe strain energy per unit volume. Then
from the above equation, we get

dUgy =o,de,+ 0y, dey +0,de, + T, dy,, +T,,dy,, + T, dy, (@

But from chain rule of differentiation, we know

ou ou ou ou ou ou
0Ug = —%de, + —2de, + —2de, + —2dy,, +—2dy,, +—2d
° " oe, X oe, Y e, 7y, Vg oy, Vye 0 5 Vax (b)
Comparing equations (a) and (b) we get,
- X1 L~ y _UZ
e, Ot Je,
STy o =Ty and — =7 ...(9.14
T S O (519

Thuswe find that thefirst derivate of strain energy per unit volume with respect to a strain component is
the corresponding stress component i.e.,

{%} - (o} .(9.15)
=[D]{e}

Integration equation 9.15 we get,

Uo= 5 {e} [Dl{e} = 5 {e} " {o)

To get total strain energy of the solid, theterm U be integrated over the entire volume of the solid. Thus,
_ _1 T _1 T
U = [[Jueav =2 [[[{e}" (o} av = 2 [[[{e} [Dlfe} av
\Y v \"

U Total potential energy of the solid

Mn=U +Wp ...(9.16a)
n=2J j [{ey [DHe} av - | j JHu}" {xe} av - Lj u}" X} ds -(2.160)

9.4 PRINCIPLE OF MINIMUM POTENTIAL ENERGY
From the expression for total potential energy (9.16.a) we know
Mn=uU +Wp
O oM o+ OWp. ..(9.17)
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Comparing equation 9.13 (a) with equation 8.18, we find potential energy of external forces Wp is equal
but opposite to total virtual work done by external forces. Thus,

O From Equation 9.17, we conclude
oM =09U - oW,.
But from principle of virtual work (equation 8.17) we know, oU = oW,
0dre 0 ...(9.18)

Hence we can conclude that adeformable body isin equilibrium when thetotal potential energy ishaving
stationary value. By taking second variance of potential energy, it has been proved by researchers that the
valueis positive definite. And hence it is concluded that the condition that value of total potential energy is
stationary correspond to minimum value. Hence we have principle of minimum potential energy in solid
mechanics, which. may be stated as “ of all the possible displacement configurations a body can assume
which satisfy compatibility and boundary conditions, the configuration satisfying equilibrium makes
the potential ener gy assume a minimum value’ . Thisisthe variation principle in solid mechanics.

Example 9.2: Assemble equations of equilibrium for the spring system shown in Fig. 9.5 by direct approach.
Show that minimization of potential energy also yields same resullt.

Fig. 9.5

Solution: Consider the free body diagram of nodes 1, 2 and 3 shownin Fig. 9.6. L et the displacement of nodes
beu,, u, u,. Then the extensions of spring 1, 2 and 3 are
01=UW 0;=Up ~W and 53 = Uz — U, (1)
R F,
I I :
+—o—>
k & k, &, k, &, ks & ks 3,
(a) (b) (©)

Fig. 9.6
Equations of equilibrium are,
-k, 0, +k, 0, +F =0 ...(29)
-k, 0, +Kk39; +F, =0 ...(2b)

K385 + F3 =0 .(20)
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From equations 1 and 2, we get
“kty + k(U —uy) +F =0
ko (U — 1) +kg(us —Up) +F, =0
—k3(uz —up) + F3 =0
ie, (ki +ko)u —kyu, =F
—kyup +(Ky +Ka)up —ksuz =F,

and -ksu, +kyuz; = F5

The above equations in the matrix form are

(ki tky) =k, 0 [|w F
-k, ko +ky —Kk3|qUp ¢ =1F;

Now, let us see the potential energy approach. Total potential energy it the systemis,

M =%kléf+%k25§+%k35§—Flul—quz—F3u3

= % Ky ug + %kz (u - U1)2 + % ks (U3 ‘Uz)z —-Fu —Fu, —Fug
O d—nz 0, gives
oy,
Ky + ko (U = ug)(-1) = F =0
e, k= kp (U —uy) —F =0
i.e., (k1+ kz)ul_ k2 UZ = Fl
on =0 gives
ou,
ko (Up = Uy) + k3(ug — ) (D) =F,
—ko Uy + (Kp + kg)Up —kgUs = F,
and oan =0 gives,
ou,
ks(Us— Up) —F3=0
or

—kguy + k3uz; = F3

..(39)
...(3b)

...(3¢)

(%)

)

..(b)

(o)
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In the matrix form,
(ki tky) =k, 0 [|w F
—ky ko +ks —Kg|qUr =1F ..(5

Equations 4 and 5 are exactly same. Thus the condition that potential energy should have extreme value
(minimum) leads to equations of equilibrium.

Example 9.3: Determine the displacements of nodes 1 and 2 in the spring system shown in Fig. 9.7. Use
minimum of potential energy principle to assemble equations of equilibrium.

k, =60 N/m

@)

k, = 100 N/m
100 N _NW 80 N
@) 2

k, =75 N/m

@)

Fig. 9.7

Solution: Let u, and u, be the displacements of nodes 1 and 2. Then the extensions of springs are

0=l 0,=U; O3=U, —

n :%kléf+%k25§+%k35§—100u1—80u2

= %kl u? + > k, UZ + %k3 (u, —u;)* =100u, —80u,

Uy

o 0> ks(ur w) 86 0. ..(b)
ou,

—k3u; + kju, =80

—kq kg | |u,[ |80

Substituting the values of k ,k, and k,, we get.

235 -100] [u,| _ [100
-100 100 | |u,| |80
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0 up | 1 100 100|100 (1333
u,| ~ 23500 - 10000 | 100 235| |80 [ T 2133[ AnSver
Example 9.4: Solvethethree bar truss problem given in Example 8.1 by minimum potential energy principle.
Solution: Asgiven in example 8.1,

l,=2309ml,=2mandl,=4.0m.
g, = 0375u + 02165v
£, =05u
and &5 = 0125u - 0.2165v
Strain energy of a bar

1 .
= E stress x strain x volume

=lEexexAal  =leae?
2 2

O Potential energy of the structureis

M =Z%EAIi g2 - 20v

- % EA[2_3094(O.375u +02165v)” +2(05u) + 4(0125u — 0.2165\/)2] - 20v

Which is exactly same asin example 8.1.
O &= 00893

oarn 1

=05 EA[2:3004 x 2(0375u +02165v) x 02165 +4(0125u —02165v)( -02165)] -20 =0

This equation is also exactly same asin example 8.1 for vertical virtual displacement. Hence here al'so

66.048 5898
v=——and u=——
EA
and member forces are
F,=26.045 kN
F,=2.949 kN
and F.=-13562KkN Answer

9.5 THE RAYLEIGH-RITZ METHOD

The Rayleigh—Ritz method of expressing field variables by approximate method clubbed with minimization
of potential energy has made a big break through in finite element analysis. In this article Rayleigh — Ritz
method is explained with simple problems.
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In 1870 Rayleigh used an approximating field with single degree of freedom for studies on vibration
problems. In 1909 he used approximating field with several functions, each function satisfying boundary
conditions and associating with separate degree of freedom. Ritz applied this technique to static equilibrium
and Eigenvalue problems. The procedure for static equilibrium problem is given below:

Consider an elastic solid subject to a set of loads. The displacements and stresses are to be determined.
Let u, vand w bethe displacementsin x, y and z coordinate directions. Then for each of displacement component
an approximate solution is taken as

u= Zaiqo,(x,y,z) for i =1tom,
V= Zaj @;(x,y,z) for j=m+1tom, ...(9.12)

w=Zakq0k(x,y,z) for k=m,+1tom

Thefunction ¢, areusually taken as polynomials satisfying the boundary conditions. ‘a’ aretheamplitudes

of thefunctions. Thusin equation 9.21 there are n number of unknown ‘&’ values. Substituting these expressions
for displacement in strain displacements and stress strain relations, potential energy expression 9.16 can be
assembled. Then the total potential energy

n=rn (al, Ay ... Ay A -+ Ay A4 - am)
From the principle of minimum potential energy,

dn
—=0fori=1tom
da . ...(9.22)

From the solution of mequation of 9.22, we get the values of all ‘a’ . With thesevaluesof ‘a’sand @ 's

satisfying boundary conditions, the displacements are obtained. Then the strains and stresses can be assembl ed.
The Rayleigh — Ritz procedure is illustrated with small problems below:

Example 9.5: Using Ragleigh—Ritz method determine the expressions for deflection and bending momentsin
a simply supported beam subjected to uniformly distributed load over entire span. Find the deflection and
moment at midspan and compare with exact solutions.

Solution: Figure 9.8 shows the typical beam. The Fourier series y = Z 8 Sin@ istheideal function

m=1,3
. . d?y - L
for smply supported beamssincey=0and M = El F =0 atx=0andx =1 aresatisfied. For thesimplicity
X
w/unit length
A 5 » X

A

x
1N <
o<
>
1

Fig. 9.8
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let us consider only two termsin the seriesi.e. let

. TIX . 37K
y= alsmT + azsmT ..(@)

n-= ‘:‘;% [—Jz dx - Jwy dx ...(b)

Substituting y in equation (b) we get

I 2 I
-JEI —nzasinm—gﬁasin3n dx—Jwasin Xr+asin3ndx
) 2 12 17 12 727 ) S 270

|t

2 I
TX . 37K I X I 71X
2 +9,sn— | dx —w|-a —Ccos— —a, — COS——
| m I 3 I

(alsin
I I 0

l\)‘m

s

a2sn? ™ +18a,a, sin msns—n+81azsin23—n dx——I 2a, + =2
14 J(7 2= | 2 | m|~ ' 3m

l\)‘m

ot—— ot—/—~—

|
Noting that J.sm —dx = J.;(l - coszlnx) dx = %
0

I I
J.sinl—nxsinSdex = J.(coszlm - cos4l7x) dx=0
0

and —
I 2
0
El ([ , | I ,) 2wl a,
=— " |a?_ +81- =
we get, y 2|4(12 22) (1 3
Bl , 5 2wl az)
=——laj+8lay) - — | +
4 (@ ¢) m ( 173
M to be minimum,
n n
d—=0and d——
da, da,
Elr? 2wl
I.e, 2a,—-—— =0
4 "t o
or o = awl?
=S
E|7T M:O

and



Assembling Siffness Equations—Variational Method

2 243EI P

4w|4smn_x+ 4wl? SmS_m(
Bl | 243EIT |

|
0O Max. deflection which occursat X = — is

Y " L b
Elmr 243El 7 76.82El

max

we know the exact solution is

_ 5wt wif
Yma< = 364 B~ 768E]

Thus the deflection is almost exact.

2
Now, MX=EId—=EI(—allisinE L 3”‘}

- —4W|Zsinﬂ— awl®x9 g
Bl | 243EI7° |

2 2 2
Moo = _ 4wl + 4wl “x9 =ﬂ
Elmr®  243EI 7 | 805

. wi?
we know the exact valueis — .

By taking more terms in Furier series more accurate results can be obtained.
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Example 9.6: Using Rayleigh-Ritz method, determine the expressions for displacement and stressin afixed
bar subject to axial force P as showsin Fig. 9.9. Draw the displacement and stress variation diagram. Take 3

terms in displacement function.

' P
E — Youngs modulus
1
» n
A — Cross sectional
> area
I4 »le N
| 2 g 2 "
x=0 x=1I2 =
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Solution: Let the displacement at load point be u,. Then the strain energy of the bar
| 2
U= 1 EA du dx
2 dx
0
and potential energy due to external forces = —Pu,
| 2
0re 1JEA(“) dx — Pu,
2 0 dx

L et the displacement at any point be given by,
u=a +ax+ax
This function has to satisfy the boundary conditions
(i) aax=0,u=0
(i) aax=l,u=0
From Boundary condition (i), we get

0=
From Boundary condition (ii), we get, 5
O=a +al+al’
0 From equations (1) and (2) we get
O=a,l+al?
or a,=-a,l

Ou=-alx+ax :a3[—lx+x2]

At X=—=
2
u=u=a —Il+E
R e R
a,l?
e, ul=—3T
du
N — = a (-l +2x
ow ax 3( )

' 2
O re %JEAa%-(  2x)° e Paslz
0

|
1 12
:—EAagz,J.(IZ—4Ix +4x2) dx + Pa;—
2 5 4

|
3 2
= leag2|ix-202 + 2| 4 pa,

2 3 4

D

2

3)

(%)
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—= 0. EAaz—+ P—=0
dag 4
__3p
= ————
4EAl
0w - ﬂ{ |- xz]
4EAl
a;l?  3pl
Ow- 2= ——
‘T 4 16
du
=E— = Ea,(-1 +2x
o= Eay (1 +29
3p p
=E——|-1 +2x| = | —2x
on -+ 2 = 221 -2x]
3p
0oz oO,.5g —
[0} x=0 4A

3p
02=0x= = “aA
The variation of displacement and stresses are shown in Fig. 9.10.
3P
16
Parabolic variation
u
> X
@)
H +
- oo 3_&
4A
(b)

Fig. 9.10 (a) Variation of u (b) Variation of stress
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Example 9.7: Determine the displacement and stressin abar of uniform cross section due to self weight only
when held as shown in Fig. 9.11. Use (i) two terms (ii) three terms, for approximating polynomial. Verify the

expression for total extension with the exact value.

LLLty 1y 1111717 u
L >

i
!

Fig. 9.11

Solution: Let* 0’ be unit weight and E Y oung’s modulus of the material of the bar. If A isthe cross section

of the bar then,
U= [[[ 510" o} av

T
SHEIE
2 \dx dx

and W = - [[{u}" {xo} av

Polynomial function for displacement may be taken as

UZag+ta X +a, x> +agx> +... +a, X

The boundary condition to be satisfied is
At x=0,u=0

(1)

(2

WE)



Assembling Siffness Equations—Variational Method

Fromthisweget 0= a,
Ow a axt agxd .+ a,x"

(i) When only two terms of polynomial equations are used,

u=a, X 0 —= a
1 dX 1
e (du?. 1 1
0w —JEA— dx:f_[EAadez, 2
20 (dx) 2 il EAas |

| 2 |
= —Jalprdx = —pAal{X?}

0 0

=- PAalz

2
Ore %EAalzl— pAal'E

From minimization condition, we get

2
d—H:O i.e., 0=FEAyl —pAI—
da; 2
or alzﬂ
2E
0 & ﬂx
2E
aﬂd J:E% :ﬂl
dx 2

The displacement and stress variations are shown in Fig. 9.12.
Extension of the bar = u —u,

2
:ill—o:pl_
2E 2E
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A
T Three terms
u

PP

Two terms 2E

—»X
@

A
Three terms

\K Two terms
v

< —>

(b)
Fig. 9.12 (a) Variation of displacement (b) Variation of stress
(if) When three terms are considered for displacement in equation 3:
du
2
u=ax +a,X O —= af 2a,x
il 7) ax OF 7)

M=U +W,

1I du’)? I
:E-([EA(&) dx - ‘([upAdx

| |
= %EAJ.(al + 2a,x)° dx — pAI(alx + azxz) dx
0 0

_} 2X+4aLZ+4a2L3I_pA31X2+32X3I
ik A%, 230 2 3

0
1 ) P 12 13
== | +2a@,l° +—&|° |- pAlay— +a, —
ZEA{a:L a3, 3 % p 312 23

dn 1 ) 12
0% = 0. -EA2ak 2a,l A= 0
da, 2 EA2ak 28)°F 0 A
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ol
at+al =—
1 2 2E

3
gﬁ:o_aiEAPqﬁ+§%P}—m¢—=0
da, 2 3 3
4 ol
yt+ —al =——
13 sE
From eguation 8 and 9 we get,

=P _A__d

[ =
32 3E 2E 6E

P

Oar - —
Z 2E

Substituting it in equation 8, we get
a = il - _£| = E
2E 2E E

2
O w a X azxzzﬂx—ixzzﬁ |X—X_
E 2E E 2

du
=E— =pl|l -
a dx p[ X]

The variations of displacement and stress in this case also are shown in Fig. 9.12.

2 2
Extension of the bar u, - u, :é{ﬁ -%} =§|_E

Actual extension of the bar [refer Fig. 9.13]

INNNENENNNNENN|

Fig. 9.13
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Thus total extension of the bar obtained is exact in both the cases.

Comments on Rayleigh—Ritz Method

In this method the approximating functions must satisfy the boundary conditions and should be easy to use.
Polynomials are normally used. Some times sine-cosine terms are al so used.

Results can be obtained for complex problems. But for complex problemsit isdifficult to say whether the
results obtained are accurate enough to use. The doubt will arise due to the following two reasons

(i) Whether thisisthe only function which can be used
(i) How many termsin the function are to be used.

The best way to ensure the accuracy isto get result using acertain number of termsand then use additional
termsto get theresults. If the differenceis negligible, we can conclude that the satisfactory result is obtained.
However it may be noted that the lowest terms in the series should not be omitted in the approximating
functions.

9.6 VARIATIONAL FORMULATION IN FINITE ELEMENT ANALYSIS

From variational principle, we have concluded that abody isin equilibrium when potential energy isminimum.
From Rayleigh-Ritz method we have found approximating functions satisfying the boundary conditions can
be used to get the solutions. In finite element analysiswe use approximating functionsfor the elements but not
for entire body and use the principle of minimizing potential energy to get the solutionsfor complex structures.
The similarity and the differences in Rayleigh-Ritz method and finite element method are as listed below:

(a) Similarity:
(i) Both methods use approximating functions as trial solution
(if) Both methods take linear combinations of trial functions.
(iif) In both methods completeness condition of the function should be satisfied
(iv) In both methods solution is sought by making afunctional stationary.

Difference

(i) Rayleigh-Ritz method assumes trial functions over entire structure, while finite element method
usestrial functions only over an element.

(if) The assumed functionsin Rayleigh-Ritz method have to satisfy boundary conditions over entire
structure whilein finite element analysis, they have to satisfy continuity conditions at nodes and
some times along the boundaries of the element. However completeness condition should be
satisfied in both methods.

Now let us see the variational method in finite element analysis in detail. The potential energy of a
structureis
M =Internal potential energy — External potential energy
= Strain energy — Work done by external forces
=U-W
These expressions involve integration terms.
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The above expression refersto entire structure. Since the integration of the summation isthe same asthe
sum of the individual integrals, we can apply the principle to each element separately. Thus

n n n
N=Sne=S Ue-S W
dan dUe dwe
% ¥ 2 24, -(9.23)

Where {0} isvector of nodal displacement in the structure.

And {4} isthe vector of nodal displacements in the element.

Now, U, = Strain energy of the element
gl el olav
B (e} =[El{e}
and 5 =[o}{e} =[D][8]{3}
o e [[J5(1eHe))" [olielel, v

- lﬂj{a}: [8]' [D][B]{s}, av. ..(9.23)
2

If {X}"={X, ¥ Z,} and {XS}T ={Xs Ys Zs}, then the work done by these forces is given by
equation 9.13 as

wp = - [[[{u}" {xo} av - [[{u}" {X.} s ..(9.25)
where u={uv w
But u=[N]{s},

where d, isthe nodal displacement vector of the element.

0w - [[f(IN}eY,) {xo}av - [[(INI{e},) {X.} ds

= - [[J1or INT" {xe} av = [[ {8} [N]" {x} os
v S
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Hence,
MNe=Ue+Wp

=5 [ eyl olieltal, ov - [f[ {8 N D] ov - [ {8 INT {x) os.

From principle of minimum potential energy (equation 9.23),

o= [[[52le]" [ol[eis}, ov - [[JINTT {xu} av - [IN]" {X,} ds

[[[teT" [oliel{al, av =[[[INT" {xo} av + [[IN] {X} os

Thus element equilibrium equation is

[] {8} = (F).

where (.= [][1e]" [ol[e] av (029)
and {F}e= [JJINT {%o} av +[[IN]" {Xs} s

Thematrix [k]_ = ”J[B]T [D][B] dV iscalled stiffness matrix of the element and theload vector {F},
v

is caled consistent load. Thus

[k]e: [B]T [D]{B} isstiffness matrix of the element and {F}e= _[”[N]T {Xp} dv ‘H[N]T {Xs} ds
iscalled consistent load vector. )

The above equation of equilibriumisto be assembled for entire structure and boundary conditions are to
be introduced. Then the solution of equilibrium equations result into nodal displacements of all the nodal
points. Once these basic unknowns are known, then displacement at any point may be obtained by the relation

u= [N]{5}e . Thestrainsare assembled using therelation {8} = [B]{5}e and then stresses al so can be found

{0} =[Dl{el..

Comments on Variational Method

It is a versatile method. Using this method stiffness matrices and consistent load vectors can be assembled
easily. Thismethod has madefinite element analysis aversatile method. All complex problems can be solved.
Thisis universally used method in solid mechanics.
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QUESTIONS

1. State and explain the principle of minimum potential energy.
2. Derivethe general equation for determining the stiffness of an element with usual notationsin the
form

[¥].= f[8]" [O][8] av
(i) Explain the principle of Rayleigh—Ritz method.
(if) Write short note on variational principles.
(iii) Derive Euler—Lagrange equation for an integral function using variational principle.
(iv) Using principle of minimum potential energy derive the expressions for consistent loads for
body forces and surface forces.
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Discretization of Structures

10.1 INTRODUCTION

The process of modeling astructure using suitable number, shape and size of the elementsiscalled discretization.
The modeling should be good enough to get the results as close to actual behavior of the structure as possible.
In this chapter various aspects of discretization of structures are discussed.

10.2 NODES AT DISCONTINUITIES

In a structure we come across the following types of discontinuities:
(8) Geometric
(b) Load
(c) Boundary conditions
(d) Material.

(@) Geometric Discontinuities

Wherever there is sudden change in shape and size of the structure there should be a node or line of nodes.
Figure 10.1 shows some of such situations.

Node
! f % +

@

Line of nodes

-

=

e
(b) -

Fig. 10.1 (a) Bar subject to axial forces (b) Plate with varying
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Node

Node

Node

(d)
Fig. 10.1 (contd) (c) Slab (d) Dam with a crack

(b) Discontinuity of Loads

Concentrated loads and sudden change in the intensity of uniformly distributed loads are the sources of
discontinuity of loads. A node or a line of nodes should be there to model the structure. Some of these
situations are shown in Fig. 10.2.

@

Line of nodes

ety v v bbb
i I

(b)
Fig. 10.2 (a) FEM model (b) Slab with different udls
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(c) Discontinuity of Boundary conditions

If the boundary condition for a structure suddenly change we have to discretize such that there is node or a
line of nodes. Thistype of situations are shown in Fig. 10.3.

Line of nodes Node
Column

Wall

Node

?
¢
o)
|
|
I
o ! Column

Fig. 10.3  Slab with intermediate wall and columns

(d) Material Discontinuity

Node or node lines should appear at the places where material discontinuity is seen.

RLEKLL

Fig. 10.4 Material discontinuity

Fig. 10.5 Refined mesh near curved boundary of a dam

10.3 REFINING MESH

To get better results the finite element mesh should be refined in the following situations
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(8 To approximate curved boundary of the structure
(b) At the places of high stress gradients.

Such situations are shown in Fig. 10.5 and Fig. 1.2.

10.4 USE OF SYMMETRY

Wherever thereis symmetry in the problem it should be made use. By doing so lot of memory requirement is
reduced or in other words we can use more elements (refined mesh) for the same capacity of computer
memory. When symmetry isto be used, it isto be noted that at right anglesto theline of symmetry displacement
is zero. In the tension bar example shown in Fig. 1.2, biaxial symmetry of the problem is utilized and only
quarter of the bar istaken for the analysis.

10.5 FINITE REPRESENTATION OF INFINITE BODIES

Soil is atypical example of infinite body. Wherever settlement of soil is to be studied or study is required
about soil structure interaction, the mass of soil isto be modeled. Itiswell known fact that the soil mass away
from footing is not affected. However the question remains how much mass of soil isto be considered. Best
way to handlethistype of problemsisto consider acertain mass of soil and determinethe settlement under the
load. Thenincrease or decease the mass of soil, analysesand again comparetheresults. Thistype of preliminary
study helpsinidentifying the mass of soil to be considered. Figure 10.6 shows the finite element idealization
of one such problem. There are research reports that for homogeneous soil mass, H should be 4 to 6 times and
V should be 10 to 12 times the footing width or diameter.

— Bor D e

V=10to 12 Br D

72 AN, - N - AN AN AN A A 2. A

[« H=4t06 Br D ——¥]

Fig. 10.6
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10.6 ELEMENT ASPECT RATIO

The shape of the element also affects the accuracy of analysis. Defining the aspect ratio as ratio of largest to
smallest size in an element, the conclusion of many researchersis aspect ratio should be as close to unity as
possible. For a two dimensional rectangular element, the aspect ratio is conveniently defined as length to
breadth ratio. To study the effect of aspect ratio on the accuracy of results, Desai and Abel analyzed a beam
with 12 elements of different aspect ratios as shown in Figs. 10.7 and 10.8 showsthe plot of inaccuracy of the
displacement verses the aspect ratio. From thisit can be concluded that the aspect ratio closer to unity yields
better results.

|« 12 units > |« 12 units g
ry ry
1 2 3 4 5 6
7 8 9 10 11 12
Yy ¥y
. 8 .4
Aspect ratio: 1 =8 Aspect ratio: 2 =2
1 2 3
1 2 3 4
4 5 6
5 6 7 8
7 8 9
9 10 11 12 10 1 12
Aspect ratio: 12/4 =1.125 Aspect ratio: 1213 =2
8/3 8/4
1 2
3 4
5 6
7 8
9 10
11 12
12/2

Aspect ratio: =45
8/6
Fig. 10.7



Discretization of Structures 159

5 1 2 3 4 5 6 7 8 Aspectrato —»
g ! ! ! ! ! ! ! ! Exact solution
3

& 5 %

© =~ ~

£ - -

5 -10F T

o [

X 15+

Fig. 10.8 Effect of aspect ratio on accuracy of result

10.7 HIGHER ORDER ELEMENTS VS REFINED MESH

Accuracy of calculation increasesif higher order elements are used. Accuracy can also beincreased by using
more number of elements. Limitation on use of number of elements comes from the total degrees of freedom
the computer can handle. The limitation may be due to cost of computation time also. Hence to use higher
order elements we have to use less number of such elements. The question arises whether to use less number
of higher order elements or more number of lower order elements for the same total degree of freedom. There
are some studiesin this matter keeping degree of accuracy per unit cost asthe selection criteria. However the
cost of calculation is coming down so much that such studies are not relevant today. Accuracy alone should be
selection criteriawhich may be carried out initially on the simplified problem and based on it element may be
selection for detailed study.

10.8 NUMBERING SYSTEM TO REDUCE BAND WIDTH

Storing global stiffness matrix in the computer memory imposes aseriouslimitation on the number of elements/
degrees of freedom to be used. In elasticity problem the stiffness matrix is symmetric and banded. In aproblem
with 1000 degree of freedom the size of stiffness matrix is 1000 x 1000. If it has semi band width of 28, we
can store only 1000 x 28 elements and handl e the solution using suitable programming technique. The size of
semi band width of stiffness matrix depends upon the numbering system adopted for nodes. The semi band
width B is given by the expression

B=(D+1)f ...(10.2)
where D is maximum difference in node number in an element after considering all elements

f-degrees of freedom per node.

The semi band widths for various types of numbering for a two dimensional problems are shown in
Fig. 10.9. It may be concluded that the semi band width is minimum if numbering isin shorter direction and
restarted from the initial end after reaching other end.

In many standard packages numbering is done automatically to keep the semi band width least.
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1 2 3 4 5 & 7 1 2 3 4 5 6 7
14 13 (12 |11 o |9 8 8 9 (10 iz [z |z ¥
5 6 |17 @8 he po |+ P 6 17 18 me o |
28 27 6 |m |2 ks |2 22 23 |oa | |28 1 |%®
29 30 31 32 33 34 35 29 30 31 32 33 34 35
B=(13+1)x2=28 B=(8+1)x2=18
1 10 11 20 21 30 31 1 6 11 16 21 26 31
2 g 12 [ |22 |2 |2 2 7z |17z |
3 § |13 8 |2 [ ¢ 3 § 3 |8 |z [ |2
4 7w 7 |2 Ry 4 5 1z @ |22 po |
5 6 15 16 25 26 35 5 10 15 20 25 30 35
B=(9+1)x2=20 B=(6+1)x2=14
Fig. 10.9

QUESTIONS
1. Write short notes on:

(a) Effect of element aspect ratio on accuracy

(b) Numbering nodes for band width minimization

(c) Mesh refinement vs higher order elements.
2. Discussthevarious pointsto be considered while descretizing astructurefor finite element analysis.
3. Briefly explain how problem involving infinite bodies are handled in finite element analysis.
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Finite Element
Analysis—Bars and Trusses

11.1 INTRODUCTION

Under ‘bars' we consider the analysis of members subject to axial forces only. These members are having one
dimension (length) considerably large compared to cross sectional dimensions. Tension barsand columnsfall
under this category. In case of pin connected frames (trusses), members can be assumed to have only axial
forces. In this chapter the analysis of the following three types of members is explained:

(i) Tension bars/columns
(i) Two dimensional trusses (plane trusses)
(iii) Three dimensional trusses (space trusses)

Various steps involved in finite element analysis is thoroughly presented and few simple problems are
solved with hand calculations.

11.2 TENSION BARS/COLUMNS

The typical member considered for explaining the procedure is shown in Fig.11.1. In this problem we see
cross section variesin 3 steps A, A, and A,. There are three point loads P,, P, and P,.. The surface forces are
Xy, X, and x and X is the body force. The surface forces may be due to frictional forces, viscous drag or
surface shear. The body forceis due to self weight. The material of the bar is same throughout.

Step 1: Selecting suitable field variables and elements:

In all stress analysis problems, displacements are selected asfield variables. In the tension bar or columns at

any point there is only one component of displacement to be considered, i.e., the displacement in x direction.
Sincethereisonly one degree of freedom and it needs only C° continuity, we select bar element shown in

Fig. 11.2. In this case there are only two nodes.

Step 2: Discritise the continua

In this problem there are geometric discontinuities at x = 200 mm, 500 mm and 650 mm. There is additional
point of discontinuity at x = 350 mm, where concentrated load P, is acting. Hence we discritise the continua
as shown in Fig. 11.3 using four bar elements.
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Fig. 11.1
O—» O—»
1 2
O T T O- - »x
X, X X X,

O=-1 0=0 [} O=1
Fig. 11.2
Hence nodal displacement vector is
O
o=
2 {52}

Infinite element analysisthe nodes may be numbered in any fashion, but to keep the band width minimum
we number the nodes continuously. In this problem there are five nodes and in all such problem there is
definite relationship between number of nodes and number of element i.e. Number of node = Number of

elements + 1.

Thereis only one degree of freedom at each node. Hence total degree of freedom in the problemis
= Number of nodes x degree of freedom at each node

=5x1=5

[6y'=[6, 5 & 4§ a]
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ol

A 200 mm

[>
g
3
3

- — 44— — — — — Q> — — — — — =
)

X4¢—0 — — — 44—

Fig. 11.3

For any element local node number is 1 and 2 only, but global coordinate numbers for each element are
different. For example, local coordinate numbers 1 and 2 for element 3 refers to global numbering system 3
and 4 respectively. The relation between the local and global node number is called connectivity details. In
thisproblem the connectivity detail isasshowninFig. 11.4. FromthisFigureit can be seen that the connectivity
detail can be easily generated also. Thus

For element (i),

Local node number 1 =i

Local node number 2=i+1

Nodes
Element 1 2 Local numbers
1 1 2
2 2 3 Global numbers
3 3 4
4 4 5
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Step 3: Select Interpolation Functions
In chapter 5 we have seen interpolation functions [N] is given by

{u} =[N]{o}, (113)
and for bar elements
[N] =[N, N,], where

and N, =" = .(11.4)

Step 4: Element Properties

In this step we assemble element stiffness matrix and nodal force vector of the element. At any point in the
element,

{u} =u {e} =e and {0} =0, all inxdirection, which is the only direction for these elements.

From strain displacement relations,

___du_d 01| _[dN, dN,T[o
fet=e = "M Na {62} - [d_xl d_d {52} ~(119)
1 0,
=—]1-11
R

=[8] {gz} where [B] =i[-1 1]

{o} = o =[D]{¢}
=Eeg, sinceD=E ..(11.6)
Element stiffness matrix

[, = [[]e [olle] av

\

J
:if[_ll 1}[x]:;=&[_11 'J (117)
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Consistant Load

Equivalent nodal 1oads are to be calculated for each type of load acting on the element

(1) Body Force: X, istheonly body forcein thiscase. In case of self weight X, = p where P isunit weight
of the material. From equation 9.26 the consistant load due to this body force is given by

{F}.= J.J.J.[N]T{Xb} av = T{El} Pp A dx

since E=X_XC=3(X‘Xc)
le 1l
2
2 le
we get dr,‘:l—dx or dxzzdf
e
and limits of integration will be from -1 to 1
. _1‘25 |
= e
{F}e—_j1 Ly [Po Ag
2
1-6 0, | el i
Now 2 p,AfdE= . AX, [E-"| =E2A
Jz Po Ay de = b% 2112 P
- 1+¢ le 01
Similarly -[72 pbAsz— 2Alepb
_ Aepy|l
0 {Fiz ‘;[i} ..(11.8)

Noting that Al_is volume of the element, we find that half the self weight goes to each node.

(i) Surface Load: If X_istheintensity of surface load, T = X_ x perimeter is the load per unit length of the
element. Then consistant load corresponding to it is

{F1.= [JINY Xqds

| I
_ Ny _(INa 1 le
Jlfres[fufmse

-1

1
—
=
+ N

S

2 1

le
Eg“zﬂﬂ? .(11.9)

N
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Thus the consistant load for such surface traction is also half the total load at each node.

(iii) Point Load: Point loads can be directly added to nodal force vector.

e2

After finding consistant load due to all types of loads, element nodal force vector {F}e = {Eel} can be

assembl ed. ...(11.10)
Step 5: Global Properties
From step 3, we have

1 2

J cEAfL 11 g - EAl ]2
[]q‘|e1 -1 12 []ez_|ez -1 13

3 4 4

[K],, = o [—11 _.Jj ., = o [-11 ﬂ:

Ie3 Ie4

For each element their position corresponding to global rows and columns are indicated above. Now
global stiffness matrix {k} of size’5 x 5 isto be assembled. First thisis made a null matrix and then one by
element stiffness matrix is added to corresponding element in global matrix. After first element stiffness
matrix is placed in global stiffness matrix, it looks as-

A A b0
la e
El la la
0O 0 000
0O 0 000
| 0 o0 00 0

After second element stiffnessis placed in global stiffness matrix, it looks as

ﬁ —ﬁ 0O 00O
leg lea
A ALA A
E |e1 |e1 Iel |e2
0 _i ﬁ 00
|e2 |e2
0 0 0 00
e 0 0 0 0
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Final stiffness matrix in global system

A A 0 0 0
leg leg
A ALA A o o
lg e e lea
K=E| O e G T T | 0 .(11.12)
lo leo  les le
o o A ALA A
les leg lea lea
0 0 0 A A
L Ie4 |e4 i

Thus we find the stiffness matrix is a symmetric matrix and its half the band width is equal to maximum
difference in nodes of any element multiplied by degrees of freedom at each node plus 1, that is 2 in this
problem

Load Vector { F}
Loadvector {F}"=[F, F, F, F, F]

Let the element load vectors be
Fia Fo
Fi.= v 1Frn.=
{ }el {F12} { }e2 {Fzz

Fa Fas
Ft .= v 1Fr,=
{ }e3 {Fsz} { }e4 {F42
Then global load vector {F}is given by

Fi
Fot Ry
[Fl={F,+ Fy .(11.12)
Fao + Fay
Fa

Thus we can assemble global / structure stiffness equation as

[k] {6} ={F} .(11.13)

5x5 5x1 5x1
Step 6: Boundary Conditions

In this problem thereisonly one boundary conditioni.e. d; = 0 or it may have specified value. Therearetwo
methods of imposing the boundary conditions:
(i) Elimination Approach
(if) Penalty Approach
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(i) Elimination Approach

In this method the known displacement is removed from the list of unknowns and the equations are reduced.
If &, isknown displacement , then

Koo Koz Kaq Kos| [0 F, = ky10,
ks, Ksz Ksy Kgs| |03 F3— k39,
Kip Kiz Kag Kgs||0a| | Fa= kg .(11.14)
ko Koz Kss Kss] |Os F5— K510
Note elements corresponding to row and column of k, areeliminated. If &, iszero[F]T: [F, F3 Fy R

Thismethod isuseful when hand cal culations are made. If computers are used, computer coding becomes
too lengthy.

(ii) Penalty Approach

The round off errorsinvolved in computations are advantageously used in imposing boundary conditions. It
involve adding a very large number to the diagonal element and right hand side vector corresponding to the

displacement on which boundary condition is specified. Thusto impose J, = a, , the modified equation will be

(ki + C kip kg kg ks | [0y F + Cay
Koy Ky Ky Koy Kps| [0 F
O O O O O O = O
5 o o o ollao o ..(11.15)
| kst Ksp Ksg Ksy Kss| (05 Fs

Because of the modified equation 1, &, resultsinto §, = a;

Other values are obtained asusual. Thustherequired result is achieved without much changesin computer
coding. The value of C selected should be much larger than k , not less than 10° times k , so that with round
off errors §; comes out to be a,. The author used C =1 x 10?° to 1 x 10* and got satisfactory results.

Step 7: Solution of Simultaneous Equations

After imposing the boundary conditions, the simultaneous equations 11.13 are to be solved. Any method of
solving simultaneous equations can be employed. Gauss elimination iscommonly employed. In many programs
to save the memory in storing stiffness matrix k, half the band width of the matrix is stored and Choleski’s
decomposition method employed. The solution gives the unknown nodal values.

Step 8: Additional Calculations

The additional calculations required may be to find strains and stresses at various points. These calculations
are carried out element by element. From thelist of global nodal values &, for each element nodal values 6,
and J, of the element under consideration is picked up. Then displacement within the element.
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u=[NJia, =[N, Nl]{gz}
since‘ &’ coordinate of the point under consideration is known ‘u’ can be found. Then
{e} =€ =[B]{3],
and {0} =0 =[D|{¢}, =Ee .(11.16)
= E[B]{d}, -(11.17)

Calculation of Reactions

Another important stressresultant required in the stress analysisis the reactions at support. This can be found
from the equilibrium conditions of the support. For example, in this problem support is at node 1 and at this
point displacement o, iszero. Henceif R isthe reaction of the support in direction 1,then

k1101 + Kip0, + Ki303 + Ky Gy + ks & =Fp + Ry
or Ry = Ky10; + K505 + K303 + Ky 9y +kis @ —F
Ingeneral R = k10, + k50, +... + kO — F ..(11.18)
Where N is total number of nodal displacements
Example11.1: Thethin plate of uniform thickness 20 mm, isas shown in Fig. 11.5(a). In addition to the self
weight, the plate is subjected to a point load of 400N at mid-depth. The Y oung's modulus E = 2 x 10° N/mm?

and unit weight p = 08 x 10™ N/mm2 Analyse the plate after modeling it with two elements and find the
stresses in each element. Determine the support reactions also.

125 mm

P =400 N

[T
e [L1ELL]
) e

¥
l l (b)

40|0N 400N

250 mm l

l A2
1oolmm

|
y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i

X

@)
Fig. 11.5
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Solution:
A, =125 x 20 = 2500 mm?
A, =100 x 20 = 2000 mm?
The plate is modeled with two elements as shown in Fig. 11.5 (b)

1 - 5 1 -1 10
[K], = - 22107 %2500 =2 x 10°
el 101 250 101

1 - 5 1 -1 8
k] = B _ 2x10° x 2000 X 10°
e2 -1 1 250 -1 1 -

10 -10 O 10 -10 O

O[kf |-10 10+8 -8|=|-10 18 -8
-8 8 0o -8 8

Consistant L oads: Due to body force only

Fa Al |1
{F}ez{F }: XbTe{l}
€2
(F} = Fip| _ 08x107*x 2500 x 250 [1] _ [25
P 2 1 25

(F} = Fn| _ 08x10™x 2000 x 250 1| _ [20
“ |Fz 2 1 20

Apart form these there is a 400N concentrated load at node 2. Hence,

25 25
{F}=|25+20 +400| = {445
20 20

Hence the stiffness equation is,

10 -10 01 (o, 25
2x10°|-10 18 -8|{d,;=1445
0 -8 8||J; 20

The boundary conditionis §, = 0 . Hence the reduced equation is,

(18 -81(& 445-10 x 0] (445
2 x 10° 20 = =
-8 8|0, 20-0x0 20

18 -8 s 445

2 x 10° 8 2l= 8
0 8-—x8||9; 20 + — x 445
L 18 18

oo




Finite Element Analysis—Barsand Trusses 171

. 5[18 -8 (o, 445
e 2 x10 =
0 4444|565 |217.778
0 o3 S = =245 %107 mm
4444 x 2 x 10

from equation 1, we have

2 x 10°[185, - 85;] = 445
2 x 10° [1852 -8 x 245 x 10‘4] =445

185, - 196 x 103 =2225 x1073

5,=2325x 10" mm
from the relation

o = E[B]{3}, weget,

0,=2 x105i[—1 1] 0 = 0.186 N/mm?
! 250 2325x 1074 =Y mm

5105 L (1 1] 2325% 107
o,= — |- -
2 250 2a5x 107 [ 0.01 N/mm?

Reaction at Support:

5, 0
R=[ky ki ki3]0, - F,=2x10°[10 -10 0]12325x107*} - 25
3, 245x107

O Rr 490N
[Obvioudly in this simple problem reaction = total 1oad].

Example 11.2: Assemble the element propertiesfor abar with uniformly varying area subject to self weight
only as shown in Fig. 11.6(a). Neglect the possibility of buckling. Treat it as a single element.

E=X_X°,d£=|£dx or dlezedf

Ie/2 e

e 5

oo gt

T dx  dé dx
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|
|
|
|
|
|
: — 0 —» 0
2
: O O- -+
XZ
|
| = O=1
| ®)
|
|
|
|
2
2I
*X
(@)
Fig. 11.6
1 172 (9, 1 0,
=l-= Z|£ ==[-11 -
[ 2 2} le {52} Ie[ ]{52} [B]{t
where [B] =Ii[—1 1]
e

Areawhich varieslinearly also can be represented in natural coordinate system as

w5 22}

[Check: when £ = -1, A= A;when £ = +1, A=A)]

Element stiffness:

JJJ B]" [D][B] av j[B] D][B] A dk

[K] = J (] [O][B] A de

Jee s R
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[ el
20 s 4T
oL et L A e

R
)
=E A12+| a { } { } .(11.19)

where A = Average area = LZAZ

Consistant Load

Only body forceis acting and it isin the x-direction

{Xp} =X = pAdx :pA%edE

1€
(Flo= [[JIN Dojav = [, 2 oazas
\Y -1 5
1 1-¢
_ Ie 2 1-¢ 1+¢ Al 1 _5)? _ g2
S IR N LR T T
2

Now, j(l— §)° dé = j (1-2¢ +&2)

-1
37
oot
-1

s <f -] ()
-1
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1
2 .,,_8
and :[l(1+§) s =~

Ao

_p[2 1A
61 2]|A
_ o [2At A
T 6 |A*2A

Hence the element equilibrium equation is

EA[1 -11(d;] o [2A+ A
le [-1 11|93, "6 A+ 2A, Answer ..(11.21)

Example 11.3: Determine the extension of the bar shown in Fig. 11.7 due to self weight and a concentrated
load of 400N applied at itsend. Given b, = 150 mm b, =75 mmt = 20 mm

wlo W[

o'}
P N wld wloo

..(11.20)

E =2 x 105 N/mm¢ p=08x10"* N/mm®

—»>0 —0
1 2
600 O : ! O- - »x
O=-1 0=0 0 O=1

Fig. 11.7
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Solution:
A, =150 x 20 = 3000 mn?;, A, =75 x 20 = 1500 mm?,

3000 + 1500

O Averagearea A = = 2250mm?

O |k =
[ 5: -1 1 600 -1 1
sinceit isthe only element, above expression is global stiffness matrix also. Due to self weight

1 7]

Eﬂ[l —}_2x105x2250[1 —}

le

At 2A

_ 08x10*x 600 [2x 3000 +1500) (60
- 6 3000 + 2 x 1500( ~ |48
Due to concentrated |oad

{Fle= {4%0}

0 {Fiz {38}
(F}={F),={ gl

_2x10°x2250[ 1 -1](d,] (60
- 600 -1 1|5, 448

The boundary condition is §; = 0. Hence the equation reduces to

since there is only one element,

The egquationis

_ 2x10°x 2250
600

or 5, = 5973 x 10 mm

O Extension of thebar =5, - J;
=5.973 x 10* mm

=5, =448

Temperature Stresses

175

Change in the temperature in amember causes stresses, if itsfree expansionisprevented. Let AT betherise
intemperatureanda bethe coefficient of thermal expansion. To find the stresses devel oped dueto changein

temperature we can use any one of the following two methods:
(i) Direct Approach
(if) Variational Approach
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(i) Direct Approach

The free expansion of the element shown in Fig. 11.8(a) will be I a AT . Thisis as good

ELOQT

1 2
Cl 13: = = q—C, O—}
/ ELOOT
LogoT
Fig. 11.8

as applying tensileforces E, A. 0 AT at the ends of the element as shown in Fig. 11.8(b). Hence the nodal
load vector due to rise in temperature in the element is

[Fl = EAGAT {_11} ..(11.23)

This may be added to nodal load vector {F} due to the other loads.
If uisthefinal displacement of any point in the element, displacement due to elastic strain
= Total displacement — Free expansion

=u-lga AT
O Elastic Strain —c= [B]{é}e _ IealeAT
e
=[BJ{d}, - a.AT (11.24)
Elastic Stress 0 = E, €
= E.[B]{0}, - BcacAT .(11.25)

[Note: Free expansion will not cause stressesin a member]

(ii) Variation Approach
Strain due to change in temperature may be treated asinitia strain as shown in Fig. 11.9

Oa
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Thus, o= 0 AT ...(11.25)
Stress strain relation is
o=E(e-g) ..(11.26)

If our interest isto find the stresses due to temperature rise only, then equation 9.16(b) for total potential
energy reduces to

1=l ol - 3 4 ey e e e

1

- Z %EeAe|eJ.(5 - £5)' (£ — £0)d¢

1

=3 Teal [(8]i0), - <) (B8}, - <)ot

1

-5 2eal J(o (e ), - 206" 6] &+ &)ae

Minimization of potential energy am =0, gives

d{o}
1 1
T T
- ZEeAeIeJ.(Z[B] [B]{5}, - 2[B] &+ 0)d&=0
-1
The first term correspond to element stiffness matrix as found earlier. The second term corresponds to
load vector due to temperature changes. Thus the load vector due to temperature effect is given by

1
I
[Fr} =2 0eem [[B]" o
€

substituting [B] = Ii[—l 1]
e

and £y= a AT , weget
B Ao 1[-1 1
trr) = Eepe L W ey,

=E AQ AT{_ll} ..(11.27)
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Thisload vector may be added to load vector due to body forces, surface forces or the applied load and
the problem solved to get displacements due to all the causes. After nodal displacements {6} are found,
member stress may be found by

0=Ee(e - &) =Ec€ —Eo&

= E[B]{0}, - Ee @ AT -(11.28)

Example 11.4: Determine the nodal displacements at node 2, stressesin each material and support reactions
in the bar shown in Fig. 11.10, due to applied force P = 400 x 10°N and temperature rise of 30°C. Given:

A, =2400 mm*> A = 1200 mnv
|, =300 mm |, =400 mm
E, = 0.7 x 10° N/mm? E, =2 x 10° N/mn?

and a;=22x107°/C° a,=12 x107%/C®

Aluminium Steel
|<7 300 mm >}< 400 mm >}
(All Il' El' Dl) (sz Izr EZ! DZ)
Fig. 11.10
Solution:
E 1 -1
[],= =2
e 1, [-1 1
1 2 — Global
1
_07x10°x2400[ 1 -1] _, ,[ 560 -560]1
- 300 -1 1| ~ |-560 560 |2
2 3« Global
1
[K] _2x10°x1200[ 1 -1 _ o3| 600 —600]2
2" 400 -1 1| ~ |-600 600 |3
560 -560 0 560 -560 O

O [kF 10°|-560 560 +600 —600|=10°|-560 1160 -600
-600 600 0 -600 600
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Nodal Force Vector

Due to temperature changes

Global
s & -1 -110880| 1
{Fer}. =07 x 10° x 2400 x 22 x10° x30 =
1 1 110880 | 2
Global
-1 —86400
{Fsr}, =2x10° x1200 x12 x107° x30 = 2
2 1 86400 | 3
-110880 -110880
O {FsF 4110880 - 86400 = 4 24480
86400 86400
Due to applied forces
0
{F} =< 400000
0
O Load vector due to applied loads and temperature effect is
-110880 + 0 -11088
{F} = 124480 + 400000 = 10%{ 42448
86400 + 0 8640
The equilibrium equation is
560 -560 O 0, -11088
10°| -560 1160 -600|{d, =10%{ 42448
0 -600 600 | |04 8640

The boundary conditionsare §, = §,=0
O The eguation reduces to
11600, = 42448

i.e J,=036593 Answer

0 = E¢[B]{d}, - Ec 0. AT

}—0.7 x10° x 22 x107® x 30

0
0 o 0% 10% i{ 1 1]
300 036593

=39.18 N/mm? Answer

179
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036593
02=2x105xi[—1 1]{ }—2x105x12x10‘6x30

400 0
=50.965 N/mm?  Answer
61
R=[ky ki k|01 - F
3
0
=10°[560 -560 0]{036593} + 110080 = -9404IN Answer
0
0
Ry=10°[0 -600 600] {0.36593; — 86400 = ~305959N ~ Answer
0

[Check: Z H =0 - —94040 +400000 - 305959 =0].

11.3 TWO DIMENSIONAL TRUSSES (PLANE TRUSSES)

Fig. 11.11 showsatypical planetruss. Thetruss may be statically determinate or indeterminate. Intheanalysis
all joints are assumed pin connected and all loads act at joints only. These assumptions result into no bending
of any member. All membersare subjected to only direct stresses-tensile or compressive. Now we areinterested
to see the finite element analysis procedure for such trusses.

y
A

Py P, Py Py P,

A A\ 4 y \4 y

S0
A\ A

P, VP, VP,

Fig. 11.11 A typical plane truss

Step 1: Field Variables and Elements

Joint displacements are selected as basic field variables. Since thereis no bending of the members, we haveto
ensure only displacement continuity (C°-continuity) and there is no need to worry about slope continuity
(Ctcontinuity). Hence we select two noded bar elements for the analysis of trusses. Since the members are
subjected to only axial forces, the displacementsare only inthe axia directions of the members. Thereforethe
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nodal variable vector for the typical bar element shown in Fig. 11.12 is

{o'}= {gz} ..(11.29)

where o and oY areintheaxial directions of the el ement. But the axial directionisnot samefor all members.

If we select x-y as global coordinate system, there are two displacement components at every node. Hencethe
nodal variable vector for atypical element is,

{6)'=[6, 6, & 4] ..(11.30)

Fig. 11.12 Typical element and its nodal displacements

asshowninFig. 11.12
From the Figureit is clear that

0;= 6,cosf+ d,sin O
0, =065c0s0+ 9,sin O
If | and m are the direction cosines,
| = cosf, m=sinb,
0% 1o mo,

8, =13, +m3,

0y

0] I 0 0f|d

e (COERISEE ;A :
5 1o o 1 m|la,

04

ie {o'} = [L]{3} ..(11.31)
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m O O
where }

4=l 5 )

and [L] is called transformation (or rotation) matrix. If the coordinates (x,, y,) and (x,, y,) of node 1 and 2 of
the elements are known, we can find

XK~ X
|

Yo™ W1

| = ,m=
[

e e

where le= \/(xz - xl)2 +(y, = yl)2 ..(11.32)

Step 2: Discritising
A member may be taken as an element conveniently. Hence in the typical truss considered. There are
(8 4—top chord members
(b) 4 —bottom chord members
(c) 5-—vertical members and
(d) 8-—diagonal members

O Total elements selected are—21
There are 10 nodal points and they are numbered as shown in Fig. 11.13.

2 5 4 6 6 7 8 8 10
Q 0
15 17 19 21
9 10 11 12 3
14 16 18 20
d o)
1 3 5 7 9

Fig. 11.13  Numbering nodes and members

The numbering is such that the band width is minimum. In this case maximum difference in the node
numbers of an element isin diagonal membersand isequal to 3. The degree of freedom of each nodeis 2, one
in x-direction and another in y-direction. Hence the maximum band width

=(3+1)x2=8
Total degrees of freedomis
= Total number of nodes x degree of freedom of each node
=10x2=20

Dk [6, 8 & &..d5 &)
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The nodal connectivity detailsis as given below:

Element No. Element Node 1 Element Node 2
1 1 3
2 3 5
3 5 7
: : : Global
: : : numbers
20 7 10
21 8 9

Step 3: Interpolation Functions
Since bar element is used,

{u =[N]{o"}

where [N] =[N, NZ]z[

Xy = X' x'—xi} :[1—5' 1+5'}
I I

Step 4: Element Properties

(a) Stiffness Matrix: In the analysis of bars and columns, we have seen the element stiffness matrix is

CRES N

when viewed inlocal coordinate system, thetrussisalso aone dimensional two noded bar element. Hencethe

element stiffness matrix of truss element in local coordinate system, [K'], is given by
k=2 ]
Uz {81 k] {5}
(8} =[L]{e)
Uz (L) KI[LE)
= ST KL} = 5181 k]t

where [K],=[L]" [K][L] .(11.339)
and it may be called as element stiffness matrix in global coordinate system.

ELA[L -1[I mo o
e |1 1]l0 0 I m

0 [K]

€

o o 3 —
3 — o o
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0 12 Im -2 -m

_EAm Ol mo -l -mp B Al Im P -Im P
l |0 If[< -m I m|” 1 |42 am 12 im ..(11.33b)

0 m -Im -m* Im n?

[Note: The above expression is same as equation 3.6, which was obtained by direct approach]

(b) Consistant L oads:
Since all loads are acting at joints which are node points also, the load vector can be assembled straight way.
Normally load vector { F} of size equal to degrees of freedom is generated as null vector and then load vector
values are supplied. In the problem shownin Fig. 11.11,
Fe=—P, Fio =P, Fiu=—Ps
F,=-P, F,=-P, F.=-P, F,=-P.andF, =-P,
Step 5: Global Properties
It may be noted that for member i j.
01= 051, 0= &y,
03=0yjpand 9= 04
Hence the position of elements of [K]_ in global stiffness matrix for member i j are as shown below:
2i-1 2 2j-1 2j
1> Im -1> -m|2 -1
E.A|Im m® —-Im -n?| 2
le [-17 -m 17 Im|2j-1
-Im -m* Im m* | 2j
Theglobal stiffness matrix of required sizeisinitially devel oped as null matrix. Then for element number
1, element matrix is generated and they are added to the existing values of elements of global matrix at

approximate places. Then next element stiffness matrix is generated and placed in appropriate positions in
global matrix. The processis continued till all elements are handled.

Assembling of load vector is already explained in step 4.

[k]e=

e

Step 6: Boundary Conditions

If hand cal culations are made usually elimination approach isused and if computersare used penalty approach
isused for imposing boundary conditions. The method is exactly same as explained in the analysis of columns
and tension members.

Step 7: Solution of Simultaneous Equations
This step is also same as explained in the analysis of tension bars and columns.

Step 8: Additional Calculations
Analysts are interested in finding stresses and forces in the members of the truss. We know

o=E.¢

= Changeinlength _ &, — o]
Origina length e

But
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3,
ut r=1ua=[y 5 7 o]
3
0o IE—:-[11] [l) rg ? 2}{5}
=Z2 [ -m 1 ] {0} (1134

Using equation 11.34 stresses are calculated in al the elements / members. If forces are required the
stresses may be multiplied by the cross sectional areas. Positive value indicates tension and the negative
compression. Thereactionsat supports may be cal culated on thelines explained in the analysis of tension bars
and columns. To make the analysis procedure clear, a small problem is solved below with hand cal culations.

Example 11.4: For the three— bar truss shown in Fig. 11.14, determine the nodal displacements and the stress
in each member. Find the support reactions also. Take modulus of elasticity as 200 GPa.

Solution: Element numbers, node numbers and displacement numbers are as shown in Fig. 11.15. Taking
node 1 as the origin, the coordinates of various nodes are 1 (0,0), 2 (800, 0), 3 (400, 400).

0 l& \/(806- 0% (0- 0)°= 800mm

les = (400 — 800)? + (400 — 0)> =400+/2 mm

leg = /(400 — 0)% + (400 —0)° =4004/2 mm

400

Fig. 11.14
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@
T
5 FQ—P 2
Element No. Node 1 Node 2 Element
1 1 2
2 2 3 Global
3 1 3
6,=0 6,=135° 05 =45°
I1 =1.0 I2 =-0.707 I3 =0.707

0 m, = 0.707 m, = 0.707
= E, = E, = 200GPa = 200 kN/mm?

12 Im -2 -m 10 -10
[k]efﬂ hm  m -m -mf | 200150010 0 0 O
g | 12 -lm 12 Im 800 |-10 1 0
-hm - Lm0y 0000
1 2 3 4 Globa Numbers
375 0 -375 0 1
o 0o 0 o 2
" |-375 0 375 0 3
0 0 0 O 4
3 4 5 6 Global numbers
05 -05 -05 05 3
_200x2000|-05 05 05 -05 4
[kleo = 400y2 |-05 05 05 -05| 5

05 -05 05 05 6
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3 4 5 6 Globa numbers
35355 -35355 -35355 35355 3
_ -35355 35355 35355 -35355 4
-35355 35355 35355 -—-35355 5
35355 -35355 -35355 35355 6
1 2 5 6 Global numbers
05 05 -05 -05 1
[K]..= 200 x 2000| 05 05 -05 -05 2
@ 400/2 |-05 -05 05 05 5
-05 05 05 05 6
1 2 5 6 Globa numbers
35355 35355 -35355 -35355 1
_ 35355 35355 -35355 -35355 2
-35355 -35355 35355 35355 5
-35355 -35355 35355 35355 6
[ 3750+ 0+ -3750 + 0+ 0+
35355 35355 0 0 -35355
0+ 0+ 0+ 0+ 0+
35355 35355 0 0 -35355
-3750+ 0+ 3750 + 0+ 0+
0 0 35355 -35355 -35355
[K] =
0+ 0o+ 0+ 0+ 0+
0 0  -35355 35355 35355
0+ o+ -35355+ 35355+ 35355 +
-35355 -35355 0 0 35355
0+ 0o+ 35355+ -35355+ -—35355+
i -35355 -35355 0 0 35355
F,=F,=F,=F,=F,=0andF,=-150
[ 72855 35355 —3750 0 -35355 -35355] (& 1
35355 35355 0 0 -35355 -35355| |J,
-3750 0 72855 35375 -35355 35355 | |0 3
0 0 -35355 35355 35355 -35355| (9,
-35355 -35355 -35355 35355 7071 0 o 5
_—35355 -35355 35355 -35355 0 7071 | 56

0+
—35355

0+
—35355

0+
35355

0+
—35355

35355 +
35355

35355 +
35355 |

o O O O

-150

187
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The boundary conditions are,

0,=0,=0,=0
Hence the equation reduces to

72855 -35355 35355| (O, 0
-35355 70710 0 050=4 0
35355 0 7071 | | O -150
72855 -35355 35355] (4, 0

0 53553 17157 (45,,=3 O

0 17157 53553 |03 -150
72855 -35355 35355] (o, 0

O 0 55698 17157 |405,=3 O
0 0 48056 |J¢ -150

from equation 3; 480565 = -150 i.e. J; = —0312mm
from equation 2; 5569855 + 17157 (-0.312) =0

0= 01mm
from equation 1; 728556, — 35355 (01) + 35355 (-0312) =0

35355 x 01 + 35355 x 0312 _

O or 02mm
72855
0,
E 5
Uor I_l'Ell‘”h ly ml] 52
1 3
04
0
200 0
2%[_1 010] 02(=-0.05 Answer
0

O Pe o, A= — 005 1500= - 75kN Answer

02

= 20 [0.707 -0707 -0707 0.707]

g, =
27 40042

01
-0312
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1
=——[0707(02 - 0 - 01 - 0312)| =0053 Answer
O P= o, A= — 005% 200C= 106kN Answer
02
00
04 = 200 [-0.707 -0.707 0.707 0.707)
400+/2 01
-0312
= i[o.7o7(—o ~0 +01 -0312)]= 0.053kN/mm?  Answer
242
O PF o3Af 005% 2006 106kN  Answer
00
00
02
R +0=[72855 35355 -3750 0 -35355 -35359 00
01
-0312

O Rz 0 Answer

00
00
02
00
01
-0312

R,+0=[35355 35355 0 O -35355 -35355]

O R7 75kN Answer
Similarly R,=75kN  Answer
Example 11.5: If the support B of truss shown in Fig. 11.15 yields by 0.1 mm, determine the member forces

due to applied load and yielding of the support.
Solution: The equation of equilibrium remains asin the previous problem. Only boundary condition changes.

Inthiscase 4, = 01mm . Theother two boundary conditionsare sameasinthepreviouscasei.e,, §;= 6, =0.
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Imposing the boundary conditions &, = &, = 0, the equation reduces to

72855 —35355 -35355 35355 | (0, 0
—-35355 35355 35355 -35355|(d,| | O
-35355 35355 7071 0 05 "] o

35355 -35355 0 7071 | |94 -150

Introducing 6, = —01 we get

[ 72855 -35355 35355] (4, 0 - 35355 x 01
-35355 7071 0 b5 ¢ =1 0+35355x01
| 35355 0 7071 | | 3¢ -150 - 35355 x 01
[ 72855 -35355 35355] (o, -35355
i -35355 7071 0 ds ¢ =1 +35355
' | 35355 0 7071 | | 3¢ -185355
72855 -35355 35355] (I, 35355
0 53553 17157|{d. ¢ =1 —18198
0 17157 53553] | &, -168198
72855 -35355 35355] (0, 35355
0 0 53553 17157 |18 =4 -18198
0 0 48056 | | dg -111957
6 = (11318 -02318mm
48056

53553 J; + 17157 x (0.2318) = 18198

O 6= 0.04028mm
7285505 — 35355(0.04028) + 35355(-02318) =35355

05=018056mm
0

E o
= m L m]
el 3

04

0
_ 200 x 1500

0
500 [-1 010 =67.71kN

018056
-01
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018056
200 x 2000 -01
=———10707 -0.707 -0.707 0.707 =4.24 kN
27 40042 [ ] 0.04028
-02318
0
200 x 2000 0
=——|[-0.707 -0.707 0.707 0.707 _
-02318
67.71
{P} =1 424 Answer
-95.76

Temperature Stresses

(i) Direct Approach: Whenviewed inlocal coordinate system, this element is one dimensional and for such
element thermal forcesdueto AT risein temperature are E, A, a AT asshowninFig. 11.16

F} DE, A, 00 ,

F53 sinO

i
Fi# cos O

2

Fid OOE, A0 ¢

Fi# cos O

Fig. 11.16

O (Fak EeAcao AT {_11}

where {Fgr} isload vector due to temperature effect in local coordinate system.
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In global x-y system, it is seen easily that the load vector is,

-1 x cosa -

, -1 xsna -m
{FeT}z Ec Aca AT 1 % cosa = B A0 AT |
1x sna m

(i) Variational Approach: If we represent the load vector due to temperature effect by {F¢r} in local
coordinate system, then from equation 11.27, we get,

O (Fak EoAca AT {_11}

Let {Fér} bethe corresponding load vector in global system. Then potential energy due to thisload is
obviously same whether expressed in local or in global coordinates system. Thus,

{6} {Fir}= {0} {Fer}

but from equation 11.31,
{o}.=[L]{e].
0 (S [ {Fark {8)o{Fer)

i.e, {FeT}:[L]T{Fe'T}
| O =l
_|m 0 - -
=lo | Ee Ac 0 AT 1 = Es A0 AT | ...(11.35)
0O m m
The stress and force in the e ement can be found as was done in case of tension bars /columns
ie, o=E(e-g)
E E
- I_e([B]{(;}e -1, O,AT) = I_e [-] -m | m|{3}, -E.aAT ...(11.36)
e e

and P=Ag=Fefe [ -m | m|{d}, -E. AaAT (11.37)

Ie
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Stresses Due to Lack of Fit

At the time of fabricating the statically indeterminate frames, if a member is found to be sightly shorter or
longer (lacks in Fit), the member is forced in position. This is possible by introducing initial forces in the

member. If the member islonger by 51, theinitial force applied on joint in outward direction is,

]

e

i.e.initial stress = g, 2"

e

o i ol
orinitial strain &g = N
e

This problem of initia stress may be handled on the lines similar to stresses due to temperature effect.

Theterm a AT in case of temperature effect isto be replaced by ol in this case.
e

Example 11.5: Fig. 11.17 shows an indeterminate pin connected plane stress with cross sectional area of
diagonal members equal to 2000 mm? and all other members with cross sectional area of 1000 mm2. If
Y oungs modulus E = 200kN/mm?

(i) Assemble global stiffness matrix

(i) Determineload vector if temperature of member 1-3increasesby 25°C. Given g = 12 x 107%/°C
(iii) Determine load vector if member 1-3 islonger by 0.2 mm.
(iv) Introduce Boundary Conditions

4 ® 3 __

A
®
@ 2 3000 mm
®
L 5 2 v
e——————— 4000 mm >
Fig. 11.17

Solution: Joints and members are numbered as shown in Fig. 11.17.
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Member No. End 1 End 2 L m I .inmm A in mn?
1 1 2 1.0 0.0 4000 1000
2 2 3 0.0 1.0 3000 1000
3 3 4 -1.0 0.0 4000 1000
4 1 4 0.0 1.0 3000 1000
5 1 3 0.8 0.6 5000.0 2000
6 2 4 -0.8 0.6 5000.0 2000

We know

12 Im -1 -m
_E.A|Im m —-Im -nm?
[ke] T | 2 2
le |-l -Im | Im
-Im -m* Im P
1 2 3 4 Glopd 1 2 3 4 kGlfbal
1 0-101 50 0 -50 0] 1
_200x1000{ 0 O O Of 2 0O 0 0O 0 2
[]1_ 4000 -1 0 1 0| 3 50 0 50 0| 3
0 0 0 0] 4 0 0 0 O] 4
3 4 5 6 kGlfbaI 3 4 5 5 FGI\LobaI
0 00 0] 3 0O 0 0 O 3
200x1000(0 1 O -1| 4 _|0 6667 O -6667| 4
[k],= 3000 |0 00 0|l 5 |0 0 0 O 5
0-10 1| 6 0 -6667 0 6667 | 6
5 6 7 8 PGIiobaI
50 0 -50 0] 5
0O 0 0 0| 6
kel=| 50 0 50 o 7
|0 0 0 0] 8
1 2 7 8 ~ Global
B l
0 0 O 1
|0 6667 0 -6667| 2
ke = 0O 0 O 7
|0 -6667 0 6667 | 8
1 2 5 6 «~ Global
064 048 -064 -048 i
_ 200x 2000 048 036 -048 -036| 2
> 5000 |-064 -048 064 048| 5
-048 036 048 036 | 6
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1 2 5 6 -~ Global
{

[ 512 384 -512 -384] 1
384 288 -384 -288| 2
-512 -384 512 384 | 5
|-384 -288 384 288 | 6

3 4 7 8 ~ Global

1l
(512 -384 -512 384 3
o - -384 288 384 -288| 4
67 |-512 384 512 -384| 7
| 384 -288 -384 288 8
Global Stiffness Matrix k
1 2 3 4 5 6 7 8
50.0 0 -50.0 0 0 0
0 0 0 0 1
51.2 38.4 51.2 -38.4
0 0 0 0
0 66.67 0 —66.67 2
384 | 2887 384 | -288
-50 0 50.0 0
0 0 0 0 3
51.2 -38.4 51.2 38.4
0 0 0 0
0 66.67 0 —66.67 4
384 | 2880 38.4 -28.8
0 0 0 0
50 0 50 0 5
512 | -384 51.2 38.4
0 —66.67 0 66.67
0 0 0 0 6
384 | -288 38.4 28.8
-50 0 50 0
0 0 0 0 7
51.2 38.4 51.2 -38.4
0 0 0 0
0 —66.67 0 66.67 8
38.4 -28.8 384 | 28.80
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1012 384 -50 0 -512 384 O 0
384 9547 0 0 -384 288 0 -6667
-50 0 1012 -384 0 0 512 384
‘= 0 0 -384 9547 0 -6667 384 -288 A
“| 512 3840 0 0 1012 384 -50 O nswer
-384 -288 0 6667 384 9547 0 0
0 0 -513 384 -500 O 1012 -384
| 0 -6667 384 -288 O 0 -384 9547 |
(if) Load vector for temperature forces:
-
For= EcA,asAT 1
m
Global
1
-08 -960) 1
5 -06 -720| 2
=200 x 2000 x 12 x107° x 25 =
08 %60 | 5
06 720| 6
{FT}T:[—%.O -720 0 0 960 720
(i) Load vector if the member 5(1-3) islonger by 0.2mm
Global
1
- -08 -1280) 1
Sl |-m 02 |-06 -960| 2
Fl=E.A— =200 x 2000 X — =
{Fs} 5'Asle I 500 | 08 1280 5
m 06 %0 | 6

Equations after introducing boundary conditions: Sinceit istoo big problem for hand cal culations penalty
method may be used and solution may be obtained using standard programs. Now A; = A, =A, =0
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For temperature forces the final equation is:

[1012+C 384 -50 0 512 384 0 0 (9 0

384 9547+C O 0 -384 -288 0 -6667| |9, 0

-50.0 0 1012 -384 0 0 512 384 | |0, 0

K= 0 0 -384 9547+C O -6667 384 288 |0, _ 0
-512 -3840 0 0 1012 384 -50 0 J5 96.0
-384 —288 0 —-6667 384 9547 0 0 Og 720

0 0 -513 384 -500 0 1012 384 | |9, 0

| 0 —-6667 384 —288 0 0 384 9547 | |Jg 0

In case of stresses due to lack of fit only, only right hand side changes,

{F1"=[0 0 0 0 1280 960 0 0]

11.4 THREE DIMENSIONAL TRUSSES (SPACE TRUSSES)

Typical two noded truss element isshown in Fig. 11.18(a). Inthis x’ isthelocal coordinate system. While x,
y, zare the global coordinate system. Fig. 11.18(b) shows the

xO

DDZ.XD

2 <

(@) (b)

Fig. 11.18

6!
displaced position of the element. In local system, the displacement vector = {6'1}
2

In global system, the displacement vector is

[6y'=[6, 5, & & & 4]
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If I, mand n are the direction cosines, we know,

Xp = X - z,-z2
| = 2| l’m=y2| “iadn=2"4

e e e

The length of the member |, = \/(xz - xl)2 +(y, = yl)2 +(z, —21)2 . We know,
01 =16, +md, +nd;

and 0, =19, +md; +ng;
In matrix form,
61
o1 |1 mn 0 0 0|3,
3 10 0 01 mnl|]:
O
{6'}=[L}{o} ..(11.38)
Il mn O O O
where L=
0 00Ol mn

is called transformation matrix. From equation 11.33(a), we know the relationship between global and local
stiffness matricesis,

I O
m O
CRB TN R = el [
o 1|1, |-1 1/lo 0 01 mn
0O m
_O n_
oo
m O
[K] _EA|n 0 [I m n -l -m —n}
¢ e [0 |-l -m -n | m n
0O m
_O n_
(12 Im In -2 -Am -In|
m m m -Im -m* -mn
_EA|In mn n®> -In -mn -n?
e [-12 Am -In 12 Im o In ..(11.39)
-Im -m* -mn Im ™ mn
-In -mn -n* In mn n®
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Example 11.6: The tripod shown in Fig. 11.19 carries a vertically downward load of 10kN at joint 4. If
Y oung's modulus of the material of tripod stand is 200kN/mm? and the cross sectional area of each leg is
2000mm?, determine the forces developed in the legs of the tripod.

10KN

Fig. 11.19

Solution: Each member is taken as a bar element in space. The coordinates of various joints are
1(-3,0,0); 2(2, 0, 2), 3(2, 0, —2) and 4(0, 5, 0)
Length of each element is given by

2 2 2
6= 06 = %) + (v = %) +(z: -2)
and the direction cosines are given by
| = Xz_X1’m= 2% and n =
Ie Ie e
The details of the three elements are given below in the tabular form:

L7

Element No. Node 1 Node 2 I.inmm | m n
1 1 4 5831 0.514 0.857 0
2 2 4 5745 -0.348 0.870 -0.348
3 3 4 5745 -0.348 0.870 -0.348

From equation 11.39,

1 2 3 10 11 12 -~ Gl(ibal

[ 1811 30184 O -1811 -30184 0] 1
30184 50350 0 -30184 -50350 0| 2

- 0 0O 0 0 o o 3
17| -1811 -30184 0 1811 30184 0| 10
-30184 -50350 O 30184 50350 O 11
o 0O 0 0 0 0| 12
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4 5 6 10 1 12 « Global
A

[ 8425 -21097 8425 -8425 21097 -8425| 4
-21097 52707 -21037 2109 52707 21097 | 5
li,]= 8425 -21097 8425 8425 21097 -8425| 6

2171 8425 21097 -8425 8425 21097 8425 | 10
21097 -52707 21097 -21097 52707 -21097| 11
| 8425 21097 -8425 8425 21097 8425 | 12

7 8 9 10 11 12 . Globa
l

[ 8425 -21097 -8425 -8425 21097 8425 7
-21097 52707 21097 21097 -52707 -21097| 8
[lo]= -8425 21097 8425 8425 -21097 -8425| 9
317 | 8425 21097 8425 8425 21097 -8425| 10
21097 -52707 -21097 -21097 52707 21097 | 11
| 8245 -21097 -8425 -8425 21097 8425 | 12

Global matrix of size 12 x 12 can be assembled.
The load vector is

[F'=[0 000000000 -10 0

Hence the equilibrium eguation can be assembled. Noting that &, = &, = ... = &y = 0, thereduced matrix

equation will be of size 3 x 3, the elements being from rows and columns of 10, 11, 12. The reduced equation
of equilibriumisi.e,

18110 | 30148 0
8425 | -21097| 8425 O 0
8425 | -21097| -8425

30148 | 5035 0

-21097| 52707 | 21097 | {0,, ; = +-10
-21097| 52707 | 21097

0 0 0

8425 | -21097| 8425 Oqy 0

—-8425| 21097 | 8425

3496 -12046 0 (&, 0
ie -12046 155764 0O |{5,+=1{-10
0 0  16950| |3y, 0
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3496 -12046 O O10 0
ie. 0 151589 0 |43, (=1-10
0 0 16950| |9, 0

oaAF= 0O

From equation 2,
151584 ,, = —=10 or J;; = —0.065697

3496 5, - 12046 (-0.06597) =0
0 8,5 - 002273

0
0
200 x 2000 0
== _"""[-0514 -0857 0 0514 0857 O
Y o831 [ 11002273
006597
0
= —4.680 kN
, = 200 x 2000 [0~ 0+0 -0348(-0.02273) +087( -006597) +0|
5745
= —3.445 kN
5= 200 x 2000 [0- 0 +0 -0348(-002273) +087(-0.06597) +0]
5745
= —3.445kN

[F}' =[-4680 -3445 —3445 Answer

Note: Asthe degreesof freedom is high three dimensional problemsare not suited for hand calculations. The
computer program with penalty method of imposing boundary conditionsisideally suited for such problems.

QUESTIONS

1. Differentiate between abar element and atruss element
2. Using variational approach derive element stiffness matrix of
(8) bar element
(b) plane truss element
3. Derive the expressions for nodal load vector in atwo noded bar element due to
() Body force
(b) Surfaceload
Use variational approach
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4. Explain the elimination method and penalty method of imposing boundary conditions. Comment
on the two methods.

5. Inaxially loaded cases, how do you find the support reactions after getting required displacements?
Explain.

6. Using variational approach determine the expression for consistant load, dueto risein temperature
AT inanelement.

7. Determinethe nodal displacement, element stresses and support reactions of the axially loaded bar
asshown in Fig. 11.20. Take

E =200 GPaand P =30 kN

400 mm?*
250 mm?
}‘l 2—e—» P 3 4
|<—150 mm —>|<—150 mm—>|<7300 mm4>|

Fig. 11.20

[Answer: A, =0.062307mm A = 0.034615mm
0, =83.08 N/mm? g, =36.92 N/mm?
03 =23.08 N/mm?R =-20.77 kN R, = -9.23 kN]

8. Obtain the forces in the plane truss shown in Fig. 11.21 and determine the support reactions also.
Use finite element method. Take E = 200 GPa and A = 2000 mm?.

20 KN
> 15 KN
3
3000 mm
¥
5 2
< 4000 mm >

Fig. 11.21

[Answer: {F}T=[0 —-37.25 18.75] inkN
R,=-11.25kN R,=-15kN R, =31.25kN]
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9. Determinethe forcesin the members of the truss shown in Fig. 11.22 Take E =200GPa, A = 2000
mm2,
[Answer: {F}T=[20 —26.25 4.961 0 —6.2752] in kN]

30 KN
®
%4 ¢3 x
@ 5 o,
1 2 v
le © N
i« 4m q

Fig. 11.22
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Finite Element Analysis—Plane
Stress and Plane Strain Problems

12.1 INTRODUCTION

In this chapter, first we see the general method for the analysis of plane stress/plane strain problems using
CST elements. Then asmall problem is taken up and hand calculations are made. The idea of such approach
is to explain the steps involved is computer programming and make it clear by giving physical feel of the
calculations involved. The lengthy calculations involved are pointed out when higher order elements are
used.

12.2 GENERAL PROCEDURE WHEN CST ELEMENTS ARE USED

The general procedure is explained referring to tension bar problem shown in Fig. 1.2 and the dam section
analysis problem shown in Fig. 10.5.

Step 1: Field Variable and Element:

Since plane stressand plane strain problems are two dimensional problems, we need two dimensional elements.
Any one from the family of triangular elements (CST/LST/QST) are ideally suited for these problems. Any
one element from the family of two dimensional isoparametric elements (to be explained in next chapter) also
may be used. In these elements there are two degree of freedom at each node i.e. the displacement in x-
direction and displacement in y-direction. Hence total degree of freedomin

(i) each element = 2 x No. of nodes per element
(i) structure =2 x No. of nodes in entire structure.
For a CST element shown in Fig. 12.1, the displacement vector may be taken as

T
{6},={6. & & a& & 4} ...(12.18)
={w u ou vy Vs}e
or as
B ={u v w v, u v} ..(12.1b)
In most of the programs the order shown in equation 12.1 (b) is selected. Hence in this chapter the

displacement vector {6} isused in theform of equation 12.1 (b). Then the x and y displacements of the node
in global system are referred as 2n — 1th and 2nth displacements.
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@

Fig. 12.1 Nodal variables in CST elements

Step 2: Discritization

(b)

Discritization of the structure should be made keeping in mind al the pointslisted in Chapter 10. For all nodes
x and y coordinates are to be supplied/generated. Then nodal connectivity detail isto be supplied. For the dam
analysis problem shown in Fig. 10.5, the nodal connectivity detail is of the form shown in Table 12.1.

Table 12.1 Nodal connectivity

Element No. 1 2 3 Local Numbers
Global Numbers
1 1 2 7
2 2 7 8
7 4 11 10
8 4 5 11
10 6 12 11

Step 3: Shape/Interpolation Functions

As shown in equation 5.15, the shape function terms are
N 22t Xt oy
2A

le al+ le+c_|.y

v Y2

2A
where a, =Xy, =Xy, &=XY, =Xy, &=XY,—XY,
b, =y,-V, b,=y,-y, b=y, -V,
C =X=% C =X =X Ca=%—X%

and

When we select nodal displacement vector as shown in Fig. 12.1 (b),

2A=|1 x,

and N, = 3+ DX+ Gy

2A
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uxy)l [N, 0 N, O N3
V) = = 0
u(x,y) {V(X’y)} [o N, 0N, { te ..(12.3)
Step 4: Element Properties
Since strain vector
a
£y oX
ov
{g} =leg L= hd
. o
2 au o
—— 4+ —
o X

and nodal displacement vector isin the form 12.3, the strain displacement vector ({€} = [B]{d}), [B] isgiven
by

([0 b 0 b0
[Bl=54]0 @ 0 ¢ 0 c (12.9)
b ¢, b, ¢ by

According to variational principal (equation 9.26)
K], -JJJ )" [D][B]av

Since [B], [D] are constant matrices we get
(Kl = [B]" [D][B]V ...(12.5)
whereV = At

Thisis exactly same as equation 7.4 which was obtained by Turner by the direct approach. In equation
12.5, [D] is the elasticity matrix, which is as presented in Chapter 2 (equation 2.14 and 2.15). In case of
isotropic materials, for plane stress case,

1 u 0
[D]=1E2 po1o0 (12.6)
H 0 0 1_7/’1
and for plane strain case, B
1-p4 u 0
[D]=— = |y 1-p 0
L 2

Using equation 12.5, the element stiffness matrix can be found.
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Consistent Loads

Consistent loads can be derived using the equation

{F.= ff[N]T {Xpjav + ff[N]T {Tids (equation 9.26)
If there are nodal forces, they are to be added directly to the vector { F} .

Step 5: Global Properties

Using nodal connectivity detailsthe exact position of every term of stiffness matrix and nodal vector must be
identified and placed in global stiffness matrix.

Step 6: Boundary Conditions

Since in most of the problemsin plane stress and plane strain degree of freedom is quite high, the computers
are to be used. These problems are not suitable for hand calculations. When computer programs are to be
developed, imposition of boundary condition is conveniently done by penalty method.

Step 7: Solution of Simultaneous Equations

Gauss elimination method or Cholesky’ s decompositions method may be used. In elasticity problems, there
exits symmetry and banded nature of stiffness matrix. Hence the programs are devel oped to store only half the
band width of stiffness matrix and solve simultaneous equations using Choleski’ s decomposition method.

Step 8: Additional Calculations
After getting nodal displacements stresses and strains in each element is assembled using the relations

{e} =[B] {3},
and {o} =[D][B] {3},
The calculated value of stress for an element is constant. It is assumed to represent the value at the

centroid of the element. Asadesigner is normally interested in the principal stresses, for each element these
values also may be calculated.

Example 12.1: Find the nodal displacements and element stresses in the propped beam shown in Fig. 12.2.
Idealize the beam into two CST elements as shown in the figure. Assume plane stress condition. Take Y =
0.25, E = 2 x 10° N/mm?, Thickness = 15mm.

Y
4
3
4 » 50 KN
)
500 mm
@
1 2 Yy x
ki 750 mm —>|
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Solution: For element (1), global nodal numbersare 1, 3, 4. Local numbers 1, 2, 3 selected are indicated in
Fig. 12.3. Selecting node 4 as the origin of global coordinate system.

V, Vs

4 U
— Us

Fig. 12.3
1(0, 0), 2(750, 500) and 3(0, 500)
1 0 O
2A=|1 750 500| =750 x500 —0 =750 x500
1 0 500

0 O 500 0 -50 0

O[BE ﬁ 0O -75%0 0 0 0 750
X
-750 0 0 500 750 -500
L]0 0 1to-1o0
=ﬁ -15 0 0 0 15
-15 0 01 15 -1
E 1-pu u 0
DlJ=————| 4 1-pu O
P T 5,

075 025 O 310
025 075 0 |=02x10°|1 3 O
0 025 0 01

2 x10°
125%05
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. 310/[0 0 10-10

[D][B] === x02x10°|1 3 O|| 0 -15 0 0 O 15
750

00 1/[-15 0 0 1 15 -1

0O -15 3 0 3 15
0 45 1 0 -1 45
-15 0 01 15 1

[Kl, =t A[B]" [D][B]

_02x10°
750

‘0 0 -15]

0 -15 0
15x750x50 1|1 0 0 |ogxie| 0 303D
S DX XS, 1 9291 6 45 1 0 -1 45

2 70l0 0 1| 780

45 0 0 1 15 -1

1 0 15

0 15 -1

U Vi U3 vy U v, Globa
(225 0 0 -15 -225 150 151
0 675 -15 0 15 675 v
0O -15 30 0 -30 15 Us
-15 0 0 1 15 -10| g
-225 15 -3 15 525 -30| wu,
15 675 15 -1 -30 775 v,

= 100000

For element (2),
Local and globa node numbers are as shown in Fig. 12.4.

Fig. 12.4
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The coordinates of nodes are
1(0, 0), 2(750, 0), 3(750, 500)

b, =y,—Yy,=-500 b,=y,—y, =-500 b,=y,-y,=-0
c,=%X-%X=0 C, =X, —X,=—750 C,=X,—X, =750
10 O
2A=|1 750 0 |=1(750 x500) =750 %500
1 750 500
500 0 500 0 0 O
[B]=—— 0 0 -750 0 750
750 x 500
0 -500 -750 500 750 O
1—1.0 0 10 0 0 O
0 0 0 -15 0 15
750
0 -10 -15 10 15 0
310
[D]=02x10°|1 3 0}, sameasfor element 1.
001
. 310|[-10 0 10 0 O O
O[D][BE e 0 10°({1 3 0|/ 0 O O -15 0 15
00 1|l 0 -10 -15 10 15 O
02 x 16° -30 0 30 -15 0 15
X
=——_"—"|-10 0 10 -45 0 45
750
0 -10 -15 10 15 O
[Kl,=tA[B]"[D][B]
<10 0 0]
0 0 -10
750%x500 1|10 0 -15/02x108| o ¢ 30 > 01
X A - 2 X
[K], =15 x —— x — —~_—1-10 0 10 -45 0 45
2 2 750, 0 -15 10| 750
0 -10 -15 10 15 O
0 0 15
|0 15 0 |
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] U, \Z Us V3
30 0 -30 15 0 -157y
0 10 15 -10 -15 0 |y
-30 15 525 -30 -225 15 |,
= 10000
15 -10 -30 775 15 -675|v,
0 -15 225 11 225 0 |u
15 0 15 675 0 625 |v
u, v, u, v, u, v, u, v,
2.25 0 0 -1.5 -2.25 1.50
3.0 0 -3.0 15 0 -1.5
0 6.75 -1.5 0 15 6.75
0 1.0 15 -1.0 -1.5 0
-3.0 1.5 5.25 -3.0 -2.25 1.5
1.5 -1.0 -3.0 7.75 1.5 —-6.75
[K] = 100000
0 -1.5 3.0 0 -3.0 15
0 -1.5 -2.25 1.5 2.25 0
-1.5 0 0 1.0 15 -1.0
-1.5 0 15 —-6.75 0 6.75
-2.25 15 -3.0 1.5 5.25 -3.0
1.5 6.75 15 -1.0 -3.0 7.75

0 Theeguationis

{F}'=[0 0 0 0 50000 0 0 0

[K][e] = {F}.
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55 0 -30 15 0 -30 -225 150] (9,
0 725 15 -10 -30 15 625( 10,
-30 15 525 -30 -225 15 0 0 ||d;
, 15 -10 -30 725 15 -675 O 0 ||d,
e, 100000
0 -30 225 15 525 -30 15 ||
30 0 15 675 0 775 15 -10||J
-225 15 0 0 -30 15 525 -30||o,
| 15 675 0 0 15 -10 -30 775]|J
The boundary conditions are
0,=0,=9,=6,=4=0
O Reduced equationis,
[ 525 -225 151 (5, 0
100000/ -225 525 0 |4d5; = 450000
| 15 0 775/ |J 0
[ 525 -225 151 (5, 0
0]-225 525 0 |{d5; =105
| 15 0 775 |J 0
525 -225 15 (&, 0
O] 0 42857 06429|:{6.+ =105
0 06429 73214 |J 0
525 225 15 (o, 0
O] 0 42857 06429 |{6.r=1 05
0 0 717139 J -0075
8= —0010459

42857 &5+ 06429 (~0.010459) = 05

5= 0118236

525 5, - 2.25(0118236) + 15(-0010459) = 0

5= 0053661

[5)"=[0 O 053661 0 0118236 -0010459 O 0]

o O O

50000
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{o:}=[D][B]{s}.

0
0 -15 3 0 -3 15 0 -5584
J02x10°) sy o g g5 () 0O9OLL ) o
™0 1 45 0 01 -15 -10 0 5000
0118236
-0010459
0
-30 0 30 -15 0 15 0 9877
02 x 10° 0118236
{02}=W -10 0 10 -45 0 45 _0010459[ = 14408
0 -10 -15 10 15 O 0 5008
0

Example 12.2: Derive the expression for consistent load vector due to self weight in a CST element.
Solution: The general expression for the consistent load in any element due to the body forceis

{F1= JJJINT" o} av

) 0
For sdlf weight {X,} = {—p}

Where P isunit weight of the material

It is advantageous to take interpolation functions in the natural coordinate system, since closed form
integration formulae can be used.

We know for CST element,

[N]leOLZ 0 Ly 0
0L 0L 0 L

when nodal vector selected isin the order {\Lj }
i

L, O 0
0 L, -L,p
L, 0 {o} 0
OlF= hdA = hdA
[ ]e .[:'. 0 Ly||-p .[:'. -L,p
L; O 0
10 Ls] | ~Lsp]
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Noting that the standard integration formulais

gt r!
LPLIL, da=— P90 op
J;J (P+q+r +2)
- -, roa o1 _ _phA
we get J;J L, phdA = p(1+0+0+2)h2A— p2x32A— 3
hA
Similarly | —szdA=—%
A
hA
and J- _L3pdA=_%
A
0
1
phA |0
o {Fl=- £=2
{ }e 3 11 Answer
0
1

Example 12.3: Find the expression for nodal vector in a CST element subject to pressuresP_, P 0N side 1,
P P,on side2and P P, on side 3 asshown in Fig. 12.5.

x3?

prTIniinY
T

Fig. 12.5
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Solution: Let usfirst consider nodal vector due to pressure P, and P, only. [Refer Fig. 12.6]
We know in CST element

[N] =[L]
Alongsidel,L, =0 OL,+L,=1
e, L,=1-L,
ds =1, dL,, when sis measured from node 3 towards 2.
y
A
0 > X
Fig. 12.6
The surface forces are

=

Hence the line integral form exits for nodal force vector as given below:

{F1= JINT' X st

[0 0] )
0 O 0
=t _i. L, O {Pﬂ} ds =t _i. LoPa ds
10 L, Py ) L, P,
L, O L3Py
|0 Ly L3Py

Noting that the standard integration form for natural coordinate system is

EfL Lds= — P&
(P+q+1)

ra I

_ _h
we get J.Lz leds—i(l_‘_ 0+1)!|1Px1 5 Px1

215
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JLZ ds—
_ axq _
JLBleds_mllpxl_E P
and JL3 ds—

0 {F}= [0 0 Py Py Pa Pyl
Similarly due to forces on side 2 we get
T
{F}e:“z[pxz P2 0 0 pe pyz]
and due to forces on side 3,

{F}Z = t's[pxs Pys P Pys O 0]
0 Nodal vector dueto forceson all thethree sidesis,
l, Pyo + 15 Pys
I, Py + 13 Pys
ly Pt 13 Pya
ly Pya+ 13 Pys
ly Pt 12 Pr2

L Pyt 1o Pyo

{Fe}=

12.3 USE OF HIGHER ORDER ELEMENTS

The procedure explained for CST element may be extended to L ST (6 noded) QST (10 noded) and rectangular
family of elements also. However the procedure becomes lengthy. The shape functions to be used for these
elements are already presented in Chapter 5. For LST elements the shape functions are

Np=Ly (2L -1), Np=L, (2,-1), N3=Lg(2s-1)
N,=4L,L, N =4LL,andN,=4L,L,

We know,
u=Nu, +N,u, + Nu, + N,u, + N.ug + N U,
U
D £= du_ % dN2 dN3 dN4 dN5 dN6 u2
* dx dx dx dx dx dx dx ||:

Us
oNy _dN, dy Ny db, | dN L

Now —t = % =4 = L
dx di; dx sz dx dL3 dx
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= % + bz % + b3%
dL, dL, dL,
=b(4L,-1)
. . . dN2 dN6 . - . .
Similarly the expressions for o dk can be assembled. It gives first row of [B] matrix knowing
X X

that €, = (cji_v andv=N,v, + N,v, + ... + N,V, the second row of [B] matrix can be assembled. The third row
X

of [B] matrix correspond to
= % + —
Vo= T ax
This also can be assembled.
After finding [B] matrix our interest is to assemble stiffness matrix

[, = [[]el" [0 8] ov

Noting that [B] matrix is not a constant matrix, direct integration using closed form expressions become
lengthy process, though not impossible. Similarly the assembly of consistent loads using the expression

{F}e = J._[J. NT X, dV + J.SJ. NT X, ds islengthy process.

The isoparametric concept and numerical integration techniquesto be explained in Chapter 13, have not
only simplified and standardized the FEA analysis, but have made such elements adoptable for curved
boundaries also.

The procedure in using rectangular family of elements is same as explained above and the observations

are also similar.
QUESTIONS

1. For the CST element shown in Fig. 12.7, assemble strain—displacement matrix. Take, t = 20 mm,
E =2 x 10° N/mn?.

>
»

(200, 400)

(100, 100) (400, 100)

» X

Fig. 12.7
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2. Derivethe consistant load vector in a CST element due to
(i) Self weight
(if) Uniform pressuresP_, P acting on the side 1.



13

Isoparametric Formulation

13.1 INTRODUCTION

The various elements so far we have seen are having straight edges. To take care of curved boundariesrefined
meshes are to be used when straight edged elements are employed. Even with refined meshes analysts were
not happy with the results since unnecessary stress concentrations are introduced. Higher order elements also
do not overcome the problem of suitably approximating curved boundaries. Theisoparametric concept brought
out by Taig [1] and latter on generalized by B.M. Irons [2] revolutionized the finite elements analysis and it
also helped in properly mapping the curved boundaries. They brought out the concept of mapping regular
triangular and rectangular elements in natural coordinate system, to arbitrary shapes in globa system as
shown in Fig. 13.1. In this chapter method of coordinate transformation of natural coordinates to global
coordinate system is presented. The terms isoparametric, super parametric and subparametrics are defined.
The basic theorems on which isoparametric concept is based are explained and need for satisfying uniqueness
theorem of mapping is presented. Assembling of stiffnessmatrix isillustrated. For assembling stiffness matrix
integration isto be carried out numerically. The Gaussion integration technique which is commonly employed
is explained briefly. To make the procedure clear few small numerical problems are illustrated and lastly
application to structural engineering problemsis presented.

Parent elementsin natural Mapped element if global
coordinate system system

0

Fig. 13.1  Concept of mapping in isoparametric elements
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0
4(-1,1) A
O

0 3(1,1)
®
P ()
» [
o o
1(-1,-1) 2(1,-1)
g
4
[ I7 o 3
P (Im)
—»

8 6 ]

o o

1 5 2

|
A
4 9
o 10 o 3
P (D)
11 8
» [

12 7
O O
1 5 6 2

03 ,

A 4 (Xm yA) (Xa ya)

3 2 (%, ¥o)

1 (%, y)
0 > X
y
A 3

Quadratic
curve

0 » X

Cubic curves

>
»

0

Fig. 13.1 (contd)
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0

Fig. 13.1 (contd)

13.2 COORDINATE TRANSFORMATION

So far we have used the shape functionsfor defining deflection at any point interms of the nodal displacement.
Taig [1] suggested use of shape function for coordinate transformation form natural local coordinate system
to global Cartesian system and successfully achieved in mapping parent element to required shape in global
system. Thus the Cartesian coordinate of a point in an element may be expressed as

X=N X + N, X, + ...+ N X

y=Ny +Ny,+..+Ny

z=N,Zz +N,z,+..+N z,
or in matrix form

{xp =[N]{x},
where N are shape functions and (x), are the coordinates of nodal points of the element. The shape functions

areto be expressed in natural coordinate system.
For example consider mapping of arectangular parent element into a quadrilateral element:

| o 3 (X,,
4 (_1’ 1) * A ( 3 ya)
o 0 3(1,1)
P (D)
—> [
o o b 2 (%, )
1(-1,-1) 2(1,-1) 1(x, y1)
0 » X
(a) Parent element (b) Mapped element

Fig. 13.2 Mapping of rectangular element in natural local
coordinate system to global cartesian coordinatee system
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The parent rectangular element shown in Fig. 13.2 (a) has nodes 1, 2, 3 and 4 and their coordinates are
(-1, -1), (-1, 1), (1, 1) and (1, —1). The shape functions of this element are

@-¢)@-n  _@+4@-n)

MET ey
N = 1+ E)4(1+q) and N, = (1—6)4(1+q)

P isapoint with coordinate (€, 17). In global system the coordinates of the nodal points are
(X0 Ya)s (% ¥o)» (%5, ¥o) @nd (x,, Y,)
To get this mapping we define the coordinate of point P as
X= lel + NZXZ + N3X3 + N4X4
and y= N1y1 + Nzyz + N3y3 + N4y4
Noting that shape functions are such that at nodei, N, = 1 and al others are zero, it satisfy the coordinate
value at all the nodes. Thus any point in the quadrilateral is defined in terms of nodal coordinates.

Similarly other parent elements are mapped suitably when we do coordinate transformation.

13.3 BASIC THEOREMS OF ISOPARAMETRIC CONCEPT
| soparametric concept is devel oped based on the following three basic theorems:

Theorem |: If two adjacent elements are generated using shape functions, then there is continuity at the
common edge.

L. L.

Fig. 13.3

It may be observed that in the parent element, for any point on edge AB, shape functions N. = 0 for nodes
not on the edge and N, exists for nodes on the edge. Hence the final function isthe same for the common edge
AB in any two adjacent elements, when we give the same coordinate values for the nodes on common edge.
Hence edge AB is contiguous in the adjacent elements.
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Theorem I1: It states, if the shape functions used are such that continuity of displacement is represented in
the parent coordinates, then the continuity requirement, will be satisfied in the isoparametric elements al so.

The proof is same as for theorem 1.

Theorem11: The constant derivative conditionsand condition for rigid body are satisfied for all isoparametric

elementsiif,
Z N, =1

U=a;+a,X +agy +a 4z ...(13.1)

Proof: Let the displacement function be

0 Nodal displacement at ‘i’th nodeis given by
U=a,+0aX +agy +a,7
In finite element analysis we define nodal displacement at any point in the element in terms of nodal
displacement as
u= Z Ni Ui

Uw ZNi(a'f a Xt gyt a,4%)

=a; ZNi*'azZNiXi"'as ZNiYi*'OMZNiZi

From the isoparametric concept, we know

ZNixi:x
ZNiYFY
ZNizizz

Ow aiZNT" A% a3\ O,z ...(13.2)
Hence if equation 13.2 hasto represent equation 13.1 uniquely, then

ZNi=1

The shape functions devel oped in natural coordinate systems satisfy this requirement. Hence they can be
safely used for isoparametric representation. Thistheoremisknown as conver gencecriteriafor isoparametric
elements.

13.4 UNIQUENESS OF MAPPING

It isabsolutely necessary that apoint in parent element represents only one point in theisoparametric element.
Sometimes, dueto violent distortion it is possible to obtain undesirable situation of nonuniqueness. Some of
such situations are shown in Fig. 13.4. If this requirement is violated determinant of Jacobiam matrix (to be
explained latter) becomes negative. If this happens coordinate transformation fails and hence the program is
to be terminated and mapping is corrected.
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Fig. 13.4 Non-uniqueness of mapping

13.5 ISOPARAMETRIC, SUPERPARAMETRIC AND
SUBPARAMETRIC ELEMENTS

We have seen that in the finite element analysis with isoparametric elements, shape functions are used for
defining the geometry aswell asdisplacements. If the shape functions defining the boundary and displacements
arethe same, the element is called asisopar ametric element. For example, in Fig. 13.5 (a) all the eight nodes
are used in defining the geometry and displacement. Thus, in this case

o Nodes used for defining geometry

[J Nodes used for defining displacement

(a) Isoparametric (b) Superparametric (c) Subparametric

Fig. 13.5 [soparametric, superparametric and subparametric elements
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u=[N]{d}., x=[N] {x}_andy=[N] {y} where[N] is quadratic shape function of serendipity family.
The element in which more number of nodes are used to define geometry compared to the number of nodes
used to define displacement are known as super parametric element. One such element isshown in Fig. 13.5
(b) in which 8 nodes are used to define the geometry and displacement is defined using only 4 nodes. In the
stress analysis where boundary is highly curved but stress gradient is not high, one can use these elements
advantageously.

Figure 13.5 (c) showsasubparametric element inwhichlessnumber of nodes are used to define geometry
compared to the number of nodes used for defining the displacements. Such elements can be used
advantageously in case of geometry being simple but stress gradient high.

13.6 ASSEMBLING STIFFNESS MATRIX

Assembling element stiffness matrix is a major part in finite element analysis. Since it involves coordinate
transformation from natural local coordinate system to Cartesian global system, isoparametric elements need
special treatment. In this article assembling of element stiffness matrix for 4 noded quadrilateral element is
explainedin detail. The procedure can be easily extended to higher order elements by using suitable functions
and noting the increased number of nodes.

Figure 13.6 shows the typical parent element and isoparametric quadrilateral element.

. y
A
4(-1,1
LD 4 3 (L 1) (6, %)
(% ¥a)
0 > [
(% )
1(-1,-1) 2(1,-1) (xu ¥
0 > X
Fig. 13.6 Typical isoparametric quadrilateral element
For parent element, the shape functions are
1+&&) (1 +nn;
|2 (0 8) (L) s

4

@-8)@-n  _@+s@-n)

i.e, N, = , =
! 4 2 4

(1-¢)(1+n)
4

We use the above functions for defining the displacement as well as for defining the geometry of any
point within the element in terms of nodal values.

aro@a+n)
4 4
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When we use shape functions for the geometry,

x| _[Ng 0 N
y[ ]0o N O

N,

0O N, O
Y2 ..(13.4)

The above relation helps to determine the (x, y) coordinates of any point in the element when the

corresponding natural coordinates £ and n are given.

We are also using the same functions for defining the displacement at any point in the element

ul _IN, 0 N
v |0 N, O

N,

0 N, 07
2 ...(135)

In assembling the stiffness matrix we need the derivatives of displacements with respect to global x, y

system. It iseasy to find derivatives with respect to local coordinates £ and n but it needs suitable assembly

to get the derivatives w.r.t. to global Cartesian system.

The relationship between the coordinates can be computed using chain rule of partial differentiation.

Thus,
9 _XJ KNI
o0& JEox OEoy
0 _XO0 N0
on onox ondody
o1 | ¥||a
. o8| _ )0 0| |ox
l.e, i - ﬁ ﬂ i
an on anl oy
X o
where [J]= g g
on on

...(13.6)

1
SN

..(13.7)
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Thematrix [J] shown aboveiscalled Jacobian matrix. It relates derivative of thefunctioninlocal coordinate
system to derivative in global coordinate system. In case of three dimensional problem it is given by

X N oz
o0& 0& 0

oX 0z
=5 3
X & o

(o o o]

Now going back to isoparametric quadrilateral element,

Let
‘]ll J12j|
Jl =
[ ] |:‘]21 ‘]22

oX %
Where J.== J.=22
11 df 12 df
oX
Jn=— = ul
an an
4
we know, X= Z N = NpXg + NoX, + NaXg + N, X,
=i
ox_ ON ON OoN ON
J= —= —1X+ 2 Z B x4+ —4
T T TR T T

Similarly J,,, J,, and J,, can be assembled.

Then we get

=Z
Z

CARY
J€
N,
an

3
oLe

For any specified point the above matrix can be assembled. Now,

EARNT)
17]

s
on oy

...(13.8)
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9 9
x| _qt) %
%=1
oy an

9

={J“ le} % ...(13.9)
‘]21 ‘]22 i
an

where Jy;, Jip, Jy and J, are the elements of Jacobian inverse matrix. Since for a given point Jacobian

matrix isknown itsinverse can be cal cul ated and Jacobian inverse matrix is assembled. With thistransformation
relation known, we can expresses derivatives of the displacements as shown below:

a) 3 3, 0 offa

2 5

. . ou

_ E _ Jp I O 0 d_n

N .
x |0 0 W (g ...(13.10)

[l N

&) [0 0 Iy In]lon

The strain displacement relation is given by

au

x

e,] 100 o]

{e}=1¢€,1=|0 0 0 1 g

Y xy 0110 X

N

oy

au

9%

3, 0%, o o]|¥

=[0 0 Iy Jp ?g
L, 3, I I, 5 ...(13.11)

ov

3
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4 4
Butu=% Nyu andv=">») NV

) [oN N, N, N, 1%
1% o0 T2 o T o9 23 9o ||y
P P P 08 P !
ul | Ny Ny N N, K
0 on|_| on on on on Vo
XN 0 Ny 0 N, 0 Ny 0 Ny | |ug
9& 9& P33 0§ 9 | |v,
XN o M N, Ny MNa ||y
o) [~ o on an o ]|,

4

Substituting it in equation 13.11 strain displacement matrix [B] is obtained as,

N g M g Ny N
0 0 0¢ 23
3,03, o o]|MN Ny Ny Ny
Bl=| 0 S an an an
- - 21 Y2 0 N, 0 N, 0 N, 0 N, | (1312
o Jp I 0';_5 0';_5 0';_5 0';_5
o Moo M N N,
L on on on on |
Then element stiffness matrix is given by
T
[ = §(&]" [O][E] av
In this case,
[ =t [[[e]"[O][E] ax oy .(1313)

wheret isthe thickness.
It can be shown that elemental areain Cartesian coordinates (X, y) can be expressed in terms of the area

inlocal coordinates (¢, n) as

oxdy =1J| 8¢ an ...(13.14)
Where |J| is the determinant of the Jacobian.
0 ¢ f[[e]" (][] 9] o€ an ...(13.15)

Integration isto be performed so asto cover entire areai.e. the limit of integration isfrom & isform-1

toland n isasofrom—1to 1. Itisdifficult to carryout all the multiplicationsin equation 13.15 and then the
integration. It is convenient to go for numerical integration.
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13.7 NUMERICAL INTEGRATION

. L . . . . i 1 ) 3
In mathematics numerical integration techniques like trapezoidal rule, Simpson’s 3 rd rule, Simpson’s 3 th

rule and Gauss quadrate formula are available. In trapezoidal rule, the variation of the function between two

1
sampling point is assumed linear. In Simpson’s 3 rd rule 3 sampling points are used and second degree curve

3
isfitted. In Simpson’s 3 th rule 4 sampling points are sel ected and 3rd degree (cubic) curveisfitted. All these

methods are based on Newton Cotesformulain which values at n equally spaced sampling points are required
tofitin n—1 degree variation curve.

In finite element analysis Gauss quadrate formula is preferred since in this values at n sampling points
can be used to fit in 2n — 1 degree variation, as the evaluation of functions like B'DBdV is a time consuming
process. In this method, the numerical integration is achieved by the following expression.

[HGEER ) ...(13.16)

Where w, —weight function and f (¢;) isvalues of the function at pre determined sampling points.

In Gauss quadrature formula sampling points are cleverly placed. In this, both n sampling points and n
weights are treated as variables to make exact 2n — 1 degree polynomial. Thisisan open quadrature formula,
the function values need not be known at end points but they must be known at predetermined sampling
points.

The location of sampling points &; and weight function w, are determined using L egendre polynomials.
Hence this method is some times called as Gauss L egendre quadrature formula. Table 13.1 shows location of
Gausssampling points (¢;) and corresponding weight function (w,) for different number (n) of Gaussintegration
scheme.

Table 13.1 Location of sampling points and weight functions
1

in Gauss Integration If(f) o = ZWu )
i=1

-1

n 3 W1

1 &, = 0.00000000 W, = 2.00000000

2 -&,= &, =057735027 W, =W, = 1.00000000

3 —-&,=&45=0.77459667 W, = W, = 0.55555556
&, = 0.00000000 W, = 0.88888889

4 -&,=&,=086113631 W, =W, = 0.34785485
-, = &45=033998104 W, =W, = 0.65214515
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Fig. 13.7 shows the integration scheme for 3 point Gauss integration. It may be noted that the sampling
points are symmetrically placed, all weight are positive and the weights of symmetrically placed points are
same. Depending upon the degree of variation, the number of Gauss points n can be chosen so that integrations
areexact. Sinceinfinite element analysis, the exact degree of variation of the functionslike element stiffness
matrix are not known, preliminary investigations may be made by changing n to get stable result. Many
investigators have reported that two point house integration is more than sufficient. The above scheme may
be extended to 2 and 3 dimensional problems also.

/7¥/
£, ()

f () f, (B

-1 —0.77459667 0 0.77459667 1

Fig. 13.7 Scheme of 3 point Gauss integration

For two dimensional problem n=2 means 2 x 2 = 4 Gaussian points and for three dimensional problems
itworksouttobe2 x 2 x 2=_8. Thus,

O O
(-1,1) 4 (L 1) -1, 1) 4 (1)
. 0,0, »
. A4 1D3
@) @0)) b E
o ) 0.0, o
0.0, o0,
(0.0, (@0
oo, 0o, 6o,
(-1,-1) (1, -1) (-1,-1) (1,-1)

(a) 2 x 2 points (b) 3 x 3 points

Fig. 13.8 Gauss sampling points in two dimensional elements
11

[JtEnd =jiwf(5.n)dn

-1-1 T
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1
IIM:

o g

=ii W W f(&n)
a5

For atwo dimensiona problem, Gauss pointsfor n =2 and n = 3 are shown in Fig. 13.8.

13.8 NUMERICAL EXAMPLES

Finite element analysis using isoparametric element invol vestoo many cal culations and hence not suitablefor
hand calculations. For such analysis one hasto go for computer analysis by developing programs. With slight
additional statements various elements can be easily incorporated in a single analysis package. However to
make the procedure clear to learners of finite element analysis a small numerical problem istaken up here.

Example 13.1: Assemble Jacobian matrix and strain displacement matrix corresponding to the Gauss point

(0.57735, 0.57735) for the element shown in Fig. 13.9. Then indicate how do you proceed to assemble element
stiffness matrix.

g
N 4
L] L]
» [
. 3 4 3
T
10 mm
e Y g
1 2
[{———60 mm——p|
Fig. 13.9

Solution: The coordinates of node pointsin Cartesian system are (0, 0), (60, 0), (65.7735, 10) and (5.7735, 10).
The shape functions are

N, :%(1+ffi)(1+’7’7i)

ON_ 1. .
0 i 2 &i@ i)
N

and
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oMo Ly - %(1— 057735F - 010566

N, 1 (1-n)= L (1 - 057735) =010566

9 4 4

MNs -1 g4n) =11 +057735) =030438
o€ 4 4

MNi oL ip)=-1 (1 +057735) = 030438
o 4 4

Similarly,

Mo L _g)= -1 (1 -057735) = 010566
a4 4

Mo o La4g)=-1 1 +057735) = -030438
oan 4 4

MNs -1y 4g) =1 (1+057735) =030438

on 4 4

N, 1

1-§) =~ (1 -057735) =010566

on ~atm9=, ; )

The Jacobian Matrix is given by

Z (95 % Z—y.
Z an " Z—y.

JON
O ‘]lf Z TEI X

=-0.10566 x 0 + 0.10566 x 60 + 0.39438 x 65.7735 — 0.39438 x 5.7735 = 30.0000

[9]=

IN
i = Zd_flyi =0+0+0.39438 x 10—0.39438 x 10=0

N
I = Z 0_’7' X = 0—0.39438 x 60 + 0.39438 x 65.7735 + 0.10566 x 5.7735 = 2.88698

N
Jn= Z d_n'yi =0+ 0+ 0.39438 x 10 + 0.10566 x 10 = 5.0000

233
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[ [30.0000 0 }

288698 50000

[J*] _ [ J]—l 1 50000 -288698| |0033333 -0.019246
- 300000x50000] O 300000 | | O 0166667
The strain displacement matrix is given by
_% 0 N, 0 N, 0 N, 0 ]
173 173 o0& o5
Jp Jp 0 0 Ny 0 N, 0 N 0 N,
{B} - ‘]21 ‘]22
* * * * 0 d\l]_ 0 d\lz 0 d\ls 0 d\l4
‘]21 ‘]22 ‘]ll ‘]12 df df df df
0 N, N, 0 % 0 %
on on on on
Where J,J are the elements of Jacobian inverse matrix,
0.033333 -0019246 0 0
O[BF 0 0 0 0166667 | x
0 0166667 0033333 -0.019246
—-0.10566 0 0.10566 0 0.39438 0 -0.39438 0
—-0.10566 0 -0.39438 0 0.39438 0 0.10566 0
0 —-0.10566 0 010566 0 0.39438 0 -0.39438
0 —-0.10566 0 —0.39438 0 0.39438 0 —-010566
148843x1073 0 0011112 0 555563x1073 0 -0022915 0
= 0 -001761 0 -0.06573 0 006573 0 001761

-0.01761 148843 x10% 006573 0011112 0.06573 555563x107° 001761 0.015179
Answer
Assembling Element Stiffness Matrix
D matrix can be assembled for the plane stress or plane strain asthe case may be, by using material properties

. . T . troT
of the structure. Then the following matrix multiplication may be carried out to assemble E[B] [D][B] for

the Gauss point (0.57735, 0.57735). Thisvalue when multiplied with weight function (in thiscase 1) givesthe
contribution of the Gauss point (0.57735, 0.57735) to the element stiffness matrix.
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Assembling of the Jacobian matrix and [B] matrix may be carried out for the Gauss point (0.57735,
—0.57735) and then its contribution to stiffness matrix may be found. On the sameline assemble the contribution

of remaining two Gauss points. Addition of all the four Gauss points contribution gives the element stiffness
matrix of size3 x 8.

Example 13.2: Determine the Cartesian coordinate of the point P(§ = 05, =0.6) shownin Fig. 13.10.

»
»

Fig. 13.10

Solution: It isgiven that
E=05and n=06

Nl: = =005
4 4

N, = (1+&)(1-n) _ (1+05)(1-086) - 015
4 4

N = (1+&)(@1+n) _ (1+05)(1+06) — 05
4 4

N, = (1-8(@+n) _(1-05(1+086) _ 02
4 4

0% Zqu =0.05x2+015x8+06x7+02x3=6.1

y= ZNi Y; =0.05x1+015x3+0.6x7+02x5=57
The Cartesian coordinates of point P are (6.1, 5.7)

Example 13.3: Inthe element shownin Fig. 13.10, P isthe point (6, 5). On this point the load componentsin
x and y directions are 8 kN and 12 kN respectively. Determine its nodal equivalent forces.

Solution: We have to first determine the local natural coordinates of point P. We know

XzzNixi and yzzNiyi
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For the quadrilateral element

0% ZNi X gives

6:%[(1—5) (1-n)2+(@+&)(1-n)8 +(L +) (1 )7 +(1 €)1 #)3|
024 2(r & n+ énp 8 &-n-&n )+ 7(1+& +n +&n )+ 316 0 <n )

=20+10& +0n - 2%n
4=10¢ - 2%n
or 2=5 —-¢én

Uy ZNi Yi gives

5:%[1(1—5—0 +&) +3(1+E - ) +TL € H &) BLE 1 & )

20=16 + 45 + &

or 4=4¢+8
or 1=¢+2n
: 1-¢
From equation (2), 1 =T

Substituting it in equation 1, we get

e

2
or 4=10 -§(1-&) =% &7
ie. E2+98-4=0
. /2
¢= o 92+4 x4 = 042443

0 1-042443 _ 028779
2

(1)

..(2)
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Now, the equivalent load is given by

For Point P.

teh=InT {7}

(1~ 042443
=

—~

1-028779) _ .\ ore

N

_(1+042443)

b =

—~

1-028779) _ .o

—~ b

_ (1+042443)

3=

1+028779) _ oo

N

_ (1- 042443

4=

~

(1+028779)
4

= 018530

{F =INI"{X}

Fxl
FXZ
FX3
FX4

Fa
F2

Fy3

Fa

010248
0.25362

045859
018530

081984
202896
366872
148240

8l=8

010248 122976
0.25362 304344
{12} =
045859 550308
018530 2.22360

Example 13.4: The quadrilateral element shown in Fig. 13.11 is 20 mm thick and is subjected to surface
forcesT and T, Determine expressions for its equivalent nodal forces. If T = 10N/mm? and T =15 N/mm?2,
determine the numerical values of the nodal forces.

All linear dimensions
In mm

T (200, 100) 2 (800, 300)

» X

Fig. 13.11
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Solution: The element is subjected to load along edge 3-4. We know along edge 34, n =1

N S(E OE nF O

Ny= 4 (1+€)(L-n) =0
Ny=, (L+ &)L +n) = (L +8)
Ny= (L= &)L +n) =50 ~8)

Nodal forces are given by the expressions like

{R} = [[N]"{T}os
=t[N] {T,

We know,

2 2 Al | Ax 2+ Ay 2
Al = {/(&x)” + (Ay)” and AE g Ff ?f
In isoparametric concept, we know

XzzNixi and yzzNiyi

In this case, along line 34,
1 1
Xx=0+0 +§(1 +E)X3 +§(1 —f)X4

O Inlimiting case,

o _mx 1

dé¢ Ay 2V
o 1 1
Similarly, y=0+0+ 5(1 +&)y, +§(1 =&)Y,
O Inlimiting case

a _1. _

d& 2(Y3 Ya)

Ddgl‘: %: \/{;@5 x4)}2+{;(Y3‘Y4)}2 =%|34
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1
d==I,d
or 2 34 E

O{RE t[[N"{T,}d

0
ty ° 1 Ly | 8
=t |2 T2l dE = ¢la
t:[%(uf) {5l dé _tif;'.l(“f)Tx dé
51-9) (-8

For uniformly distributed load, T, is constant,

FXl 0
F tl 0 ¢ ¢

0d x2l =234 ; - - =
F 4 2T, since :[1(1 + &) dé '_[1(1 &k =2

Fua 2T,
0
- tly | O
Similarly = —34
y 2 T,
Ty
Fa 0
F tl 0
2= [IN]" T, }as = =2
|:y3 [ ] { y} 2 T,
Fya Ty
In this problem,
2 2
las = /(700 - 300)? + (700 ~500)° =447.21mm
t=20 mm
T,= 10 N/mnv?
Fa 0
Fys 4472136

Fu| (4472136

239
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a ks~ wbdheE

Fo 0
Fol | O

Fa[ |6708204
Fa| |6708204

QUESTIONS

Explain the isoparametric concept in finite element analysis.
State and explain the three basic laws on which isoparametric concept is devel oped.
Discuss the convergence criteria for isoparametric elements.
Explain the terms isoparametric, subparametric and superparametric elements.
Write short notes on

(8 Uniqueness of mapping of isoparametric elements.

(b) Jacobian matrix

(c) Gaussian quadrature integration technique.

Explain the isoparametric elements and their advantages.
For the isoparametric quadrilateral elements shown in Fig. 13.12, determine
(a) Cartesian coordinates of the point P which has local coordinates & = 057735 and
n = 057735 (Ans. x = 6.36603, y = 4.75088)
(b) Local coordinates of the point Q which has Cartesian coordinates (7, 4)
(Ans. £ =091255, n = 0.21059)
o y
4(-1,1) 4 1
o 03(1,1)
4(2,5)
R Q
> O
O O
1(-1,-1) 2(1,-1)
0
Fig. 13.12
For the element shown in Fig. 13.13, assemble Jacobian matrix and strain displacement matrix for

the Gaussian point (0.57735, 0.57735).



Isoparametric Formulation 241
y
A
(0,40)0—————0 (30, 40)
o » X
1 (0, 10) 2 (30, 10)
Fig. 13.13
15.0012 0
[Ans. J =
0 200016 |
-7.044 %1072 0 7044 x1073 0 0026292 0 -0026292 0o |
B= 0 -5283x107° 0 -0019719 0 0019719 0 5283x107°
-0019719 -7044x10° -0019719 7044 x107° 0019719 0026292 5283 x10° 0026292
References
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Analysis of Beams and Rigid Frames

14.1 INTRODUCTION

In Chapter 3 direct stiffness formulation of beams was discussed, which is actually stiffness matrix method
for the analysis. In Chapter 5 shape functions were derived for two noded beam element by considering
polynomial interpolation function and also using Hermitian functions both ultimately result into same shape
functions. Assembling of strain displacement matrix [B-matrix] was presented in Chapter 4. In this chapter
assembling of stiffness matrix for a two noded beam element by variational approach is presented. Taking
simple problems for hand calculation, formulation of system equations and solution procedure is explained.
Themembersof rigid frames are similar to beam elements, but their orientation in global system are different.
Transforming the stiffness equations of beam element to global system is required before assembling global
system. This aspect is presented and illustrated with numerical problem taking simple frame analysis.

It was found difficult to extend the beam theory discussed above to plate bending. A new beam theory
was developed in which lateral deflection w and rotation 6, were decoupled and trested as independent
variables. However it needs inclusion of shear deformation and hence shear strain energy. Hence the beam

theory becomes C°-continuity problem. Thisisknown as Timoshenko Beam theory and the element devel oped
on thistheory is also presented in this chapter.

14.2 BEAM ANALYSIS USING TWO NODED ELEMENTS

The typical beam element is shown in Fig. 14.1. Note the orientation of axesis as per the right hand thumb
rule.

D
v
x

x
[}
&=
0

ONIFkN
n X

Tl
L

Fig. 14.1 A typical beam element
The nodal variable vector is

6y =[6, & & a]=[wm 4 w 4]
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where w—ateral displacement at nodei.
6, —Rotation at nodei.

In Chapter 5 the shape functions for such element have been determined as,

2 3

le le

2 3

N, = X - 2X x2

le IS
_ 3x2  2x8 -2 X3

3T 5 T 3 and N4=7+f2 ...(14.2)

le lg Ie lg

If non-dimensiolising isdoneusing s = Il the shape functions are (Chapter 4, Art 4).,
e

N, = 1-3s+28°

N, =1 s(s—1)? ...(14.2)
N, = S(3—29)

N, =1 s(s—1)

If we use hon-dimensiolising concept as used in isopatametric formulationi.e. ¢ varying from -1 to 1,
then the shape functions are

_ 3
Ny 27 % +E
4
o 1-§-8%+¢&°
N,=S¢ =~ > > > ...(14.3
2=, (14.3)
_ g3 1 _ 2 3
N, 2+3-¢& dN4=|—e 1-&+&°+&
4 2 4
where E=g—l

e
Moment Curvature Relation
From basic solid mechanics we know

2
M:EI%

Since y=[N]{a}, =[N: No Ny Ng]{3},
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0°N; 9°N, 9°N; 0°N
we get M = EI |: dXZl 0)(22 03(23 dx24 {66}6
=[D] [B] {a}, ..(14.9)
where [D] =EI ...(14.5)
2 2 2 2
(B]=| 2t SN 0Ny 0N, ..(14.6)
oX oX oX oX
which is stress resultant curvature matrix.
Strain Energy
From basic solid mechanics we know strain energy dU_ in an elemental length dx is given by
2
dU, = -dv
le 2
1 %yl |
U,==|{BEl—} —d
¢ 2 .£ { axz} El
le le
1 7 1 T
= _([El S =2 JE(B)fee)) [Bl{a}, ox
1,7 ¢ |
_1 T T le
= 1ok J elfe]' [B]{s}, < d¢
since é= 2 _ 1
Ie
_ e TIe T
Dus B2 {o}; [[e] [B]{}, a¢ ..(14.7)
0
2 2 2 2
Now B=| %8 5% e o
oX oX oX oX
since é= 2 _ 1



Analysis of Beamsand Rigid Frames 245

9N, ﬂ(mi)zz z(g ﬂ)

e ox\ox) 1, o\l o€
_4 N
12 dé&?

qer A °N, °N, d%N; a%N,
[ ]: 12 2 2 2 2
lg | 06 o0& 0&°  d¢

24[65 (-39, e (1+3€)|}

12| 4 4 ¢ 4 4
:%[65 -(1-%), 6 (1+F)l] ..(14.8)
6¢
1|-1-3%)| 1
O[e]' [BE > (_65) I—Z[es -(1-F), B (1+F)l]
le (1+3¢)
3667 (1- )l (65)  -3652 EL+F),
_1 20-%)° e-F), {1+F)Q-F)2
12 SYM 36&2 -6E(1 + F)l, .(149)
12(1+38)°
Now noting that
1 1 1 2
Jeg=2 feldt =0, and [&ag =7
-1 -1 -1
We can write
24 12, -24 12,
_1 Tl 1 82 -12, 42
V=2 B0 om o -, |10

2

e

82

12 6, -12 6l

1 ._TEl 42 -6, 212 1T
_5{5} = M 12 -8, {5}e—5{5}e[k]e{5}e ...(14.109)
42
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Where [K], is element stiffness matrix and

12 6, -12 #l,

_ El 42 -6, 212
isequal to |§ SM 12 -6, ...(14.10b)
42

Potential Energy

Potential energy of an element is equal to strain energy minus the work done by the external forces acting on
the element. Thus

|
1 f dy
ne_EUe—.([pydx - SPnYn —ij[&)k ...(14.12)

Where p—Distributed load per unit length
P_—Concentrated load at point m
M, —External moment applied at k.

The strain energy term U_ has been already derived. The work done by external loads can be assembled
as explained below:

Due to Uniformly Distributed load P/unit length:

I
j;pde:fi;r{Nl Ny N N4] {5}e Eedf

lg1-& 82483 2+F <3 1,4 < €2 €3
4

4 2 4 4 2 {}eg

1
Pl f[2-3 480

1 1 1
Noting that deE=2C, J.Edé’=_|.¢'3tf =0 and

-1 -1 -1

1

J.Ezdf :% we get

-1

h p | 2 | 2
dx="2|2x2 &[2-%] 2x2 e[2+2||I5

Joran=telaxz Ffz-) 22 323t

_|pe P& ple P2
=|Pe Pe _Pe | ys
{ > 1o 2 1| Uk ...(14.12)

This equivalent load on the element is shown in the Fig. 14.2. The point loads like P, and M, are readily
taken care by introducing nodes at the points of application.



Analysis of Beams and Rigid Frames 247

Thus work done by external load is assembled. Let it be represented by

ZFiéi =F o +F, 0,+F &+F,

= {3}, {F}, ..(14.13)

p/unit length

Pk ple
2 2
N4 \‘
€ le NI
~ |
pP Pl
12 12

Fig. 14.2 Equivalent nodal loads of UDL

Minimization of Potential Energy

Itisto benoted that, in solid mechanics, minimization of potential energy of entire structureisto be assembl ed.
In finite element analysis the total potential energy of the system is considered as the summation of total
potential energy of the elements. Thus

M=2Me

= 35U~ 3{a}L {F), =5 (FY (Ko} - {81 {F}

where {8} and{F} arenodal unknown vector and load vector respectively. From the principle of minimization
of potential energy we get,

an - o
dd
[K]{o} -F =0
or [K]{o} =F ...(14.15)

In finite element analysis, element stiffness matrix [K], is assembled and placed in global matrix at
appropriate place. When this process is completed for all the elements, we get global stiffness matrix [K].
Similarly global load vector { F} is assembled.

The necessary boundary conditions are imposed by (i) Elimination Method if the hand calculations are
made or by (ii) Penalty Method if computers are used.
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The solution of equation 14.14 gives the displacement vector {d}. The required stress resultants are
determined for each element.
Moment at nodes:

:lE_Z'[eg -1-%), 6 (L+F)] 6], ...(14.15)

e

Shear forces at nodes

_dM _ dM dé _ 2 dm

dx | dE dx I, dé

2El El
=5 [6 3 6 3]{o),="5[12 6. -12 6]{o}, ...(14.16)
e e
The reactions at supports are nothing but end equilibrium forces. Hence
{R} =[K]_[2]. - {F}. ...(14.17)
R, R,
o y
&y K
le >
Rl R3

Fig. 14.3 Positive reactions

For uniformly distributed load the above equation will be

R 12 6, -12 6l ||g, %
Re| g |6l 4g -6l 22 1|s, %ez
Re| ¢ [-12 -8, 12 -6]||s, %
R, o, 22 -6, 42|, |Pe

e 4 12

Notethat the abovereactions areto beinterpreted as per sign conversioni.e. R, R, are positivein positive
direction of z-axis (i.e. downward) and R, R, (the end moments) are positive when they are clockwise (refer

Fig. 14.3).

Example 14.1: Analyse the beam shown in Fig. 14.4 (a) by finite element method and determine the end
reactions. Also determine the deflections at mid spans given
E=2x10°N/mm?and | =5 x 105 mm*
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24 KN/m
12 kN/m
YYVYVYVYVYY Y
5m > 5m »|

()

5| 0 L

él o L. o %
S

) O 0

(b)
Fig. 14.4

Solution: Using kN and m units throughout,

6
E =2 x10°N/mm? =2 x 10° x% =2 x10° kN/m?
| =5x10°mm*=5x 10°m*
O El =2 x 10° x 5 x 10° = 1000kN-m?
L et the two elements be numbered as shown in Fig. 14.4 (b). The nodal displacement vector is

[6y'=[6, 0, & & & 4]

12 6, -12 6l 12 30 -12 30
_El, [ 6l 47 -6l 27| 1000| 30 100 -30 50
YR |-12 -6, 12 -6 | 5% |-12 -30 12 -30

6l, 22 -6l, 4?7 30 50 -30 100

1 2 3 4.

)
12 30 -12 30 i
30 100 -30 50 |2
3
4

=8 -12 -30 12 -30

30 50 -30 100
Similarly,

3 4 5 6 chGlobal Numbers
12 30 -12 30] 3
30 100 -30 50| 4

k,=8
-12 -30 12 -30| 5
30 50 -30 100| 6
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1 2 3 4 5 6 <o ﬁlobal numbers

[12 30 -12 30 1
30 100 -30 50
12 -30
i 8 -12 30 .7 3N -12 30
30 50 3 0 -3 50

o OB~ WN

30 50 -30 100

global numbers

30 100 -30 50 O 0

[

1

1

2

-12 -30 24 0 -12 303
O[kF 8

4

5

6

Consistent load vector is given by

Ple
2
plZ
Fo)12
Ple
2
plg
12
(-12) x5
2 d Global Numbers
(-12) x 52 -30] 1
(-12) x5 -30| 3
2 25| 4
-(-12) x 5
12
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(-24) x5
2 J Global Numbers
(-24) x 52 -60| 3
0 F(Z)_' 12 - -50| 4
(-24) x 5 -60[ 5
2 50 | 6
-(-24) x 52
12
-30
-25
-90
o{F
FF s
-60
50
0O The stiffness equation is
(12 30 -12 30 0 0|0 -30
30 100 -30 50 0 0 ||J, -25
g|™2 80 24 0 -12 30 o3| _|-90
30 50 0 200 -30 50 ||d, -25
0O 0 -12 -30 12 -30||ds -60
|0 0 30 50 -30 100] |J 50

Boundary conditions:
In the given problem the boundary conditions are

0,=0,=0;=06=0
Imposing them by elimination method, we get

o[ (o)~ (o]
wl} 3o}
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1 1 2 -1|(|-25 1 |-100
= x—— = Answer
400 8-1|-1 4 50 2800 | 225

End reactions
R 12 30 -12 30| ° -30
R _g 3 100 30 50| | |25
Ry |-12 -30 12 =30 1%0 -30
R, 30 50 -30 100 25
2800
21429
100 _ | 10714
1 = = = 0,=— =
since 0,=06,=0;=0and 04 2800 _ 1-38571 Answer
-53571
For element 2
0
R 12 30 -12 307|_100 -60) (70714
R, 8 30 100 -30 50 ||2800 | _J-50| _|53571
= = Answer
Rs -12 -30 12 -30|] © -60|  |49286
Rs 30 50 -30 100|| 225 50 0
2800
Deflection at mid span
yz[Nl Nz N3 N4]{5}e
_|2-348 L1-8-8748 243 47 L AL €7 E7)
4 2 4 4 2 4

For midspan £ =0

Ovycentre [05 0125, 05- 0124, {6}

For element 1,

0

0
Oy centre [05 012% 5 05- 0125 5] o

_ 100
2800

=0.02232 m = 22.32 mm
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For element 2,

_ 100

Oy,cetre [05 012% 5 05- 0125 5|4 2800

_ 225
2800

=-0.02790 m = -27.9 mm
= 27.9 mm, downward Answer

Example 14.2: A beam of length 10 m, fixed at one end and supported by aroller at the other end carriesa20
kN concentrated load at the centre of the span. By taking the modulus of elasticity of material as 200 GPaand
moment of inertiaas 24 x 10° m*, determine:

1. Deflection under load

2. Shear force and bending moment at mid span

3. Reactions at supports
Solution: The beam is shown in Fig. 14.5 (a). Itsfinite element idealization is shown in Fig. 14.5 (b). In this

problem,
E =200 GPa= 200 x 10° N/m? = 200 x 10° kN/m?

20 kN

o
3
y
A
o
3
A4

o, .

13.75 13.75 6.25

Fig. 14.5



254 Finite Element Analysis

Nodal displacement vector is

[6y'=[6, 6, & & & 4]

Stiffness matrix for an element is given by

2 6, -12 6l
_El |6, 4Z -6, 22
TR |12 -6, 12 6,

6, 22 -6, 42

e e

1 2 3 4

- CE Global Numbers
12 30 -12 30| 1
4800 | 30 100 -30 50| 2
125 |-12 -30 12 -30{ 3
4

30 50 -30 100

Similarly,
3 4 5 6 ti, Global Numbers
12 30 -12 30] 3
. _4800| 30 100 -30 50| 4
27 125 |-12 30 12 -30| 5
30 50 -30 100| 6
1 2 3 4 5 6 55, Global Number

[12 30 -12 30 O 0|1
30 100 -30 50 O 0
0 [k}= 4800 -12 30 24 0 -12 30

125 {30 50 0 200 -30 50
0 0 -12 -30 12 50
0 0O 30 50 -30 100

o b~ WDN

The consistent load vector is directly available as
{F}'=[0o 0 20 0 0 0
The stiffness equation is

[Kl{5} = {F}

The boundary conditions are,
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Imposing these boundary conditions by elimination method, the stiffness equation reduces to

- 24 0 30]|(0, =20
o5 0 200 50 (<6,;,=40
30 50 100| |dg 0

By using direct inversion, we get

A . 20000 - 2500 1500  -6000] (20
“( T B 24(20000 - 2500) + 30(-6000 1500 2400 - 900 1200170
5 A ) +30(-6000) | ¢ 1200 4800 | | 0
s, [1750 1500 6000 (-20
=125 1500 1500 -1200|! 0
El 240000
6000 -1200 4800 || 0
| [e22s2) (182202 003798
= 1) asest= 1 ] 15605 =) 32852 x 10
E 4800
625 625 001302

Deflection under theload = &5 =—-0.03798 and rotation under the load = 8, =-3.2552 x 10-°radians

Shear Force and bending Moment at midspan: Considering element (1), for mid span of beamé =1

0
El 1 0
M=—[6 2, -6 4,]=
|g[ ¢ J El | -182.292
15625
0
1 0
=—[6 10 -6 20| =31.250KN'm Answer
25 -182.292
-15625
0
El 1 0
V=—1[12 6x5 -12 6x5—= =31.75kN Answer
125 El |-182292
15625

Considering element 2, shear force at mid span may be found as 6.25 kN
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End Reactions
At support on left hand side, from element 1,

0

R]_ EI [12 30 -12 30] 1 o |_Jo
R,[ 12530 100 -30 50| EI |-182292| |0

-15625
o [R_ [1875
R,| 3750

Considering element 2, the reactions at right hand supports can be obtained

-182.292

R|_E [-12 80 12 -30| 1 | -15625| [0
R,/ 12530 100 -30 100| El 0 0

625
_|625
o
The reactions and shear force and bending moment at midspan are shown in Fig. 14.5 (c).

Example 14.3: Derive the expression for consistant load, which varieslinearly from p, at node 1 to p, at node
2 on abeam element of length | .
Solution: The element with given load is shown in Fig. 14.6.

3

X

Fig. 14.6

Theload intensity at a point x distance from node 1 is given by

p=pt (P p)
1+ ¢ X 1+
=p+ (P py) | )sincelzzf
e e
- p il p tEE ..(14.18)
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{F}eszT pax
I 1-¢ 1 1+¢& 1
= [N"p2dé= [N p—-2dé+ |NT 2d
JNTp2ag= [NTp STt de s+ [N p, =02 de
2-3+&° 2 - 35 + &3
4 4
1-£-8+8%, 1-£-8+8,
1\, 5 1\, 5
4 2 [ 1-& |, 4 2 11+& |
= € df + -~ “£d
:|.1 243 - &2 5 p12 & :|.1 2438 - &2 5 p22 '3
4 4
1=+ 480, 18+ 480,
4 2 4 2
1 2 3{+53 1
- _ _ 2 3 4
Now :[1[4)(1—5)& _:'.1(2 5 +38% +8% +8%) &
1 1 1
Noting that J'ch:ZC, jfd.f:J'»:?'ds =0
-1 -1 -1
1 r 3_1
2
g | €] 22
Jea= 5] =
-1 L~ d
1 roel
_1&] .2
and J.54d5 |5 | T g5 weget
-1 L™
0238 +¢3 2 2
J.L(l—f)dE:ZXZ—OH%xf +0 -2 -28
L4 3 5 5
O Thefirstterminp, is,
%x§:%(21)
16 5 60
Similarly the other terms may be evaluated. Finally we get,
21 9
pl | 3 pl | 2
Fp =— +
{ }e 60 | -9 60 | 21 ...(14.19)

=2l -3

257
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Example 14.4: Determine the consistent nodal vector due to loads acting on the beam shown in Fig. 14.7.

100 kN
20 kN/m
fe——4m >ie 6m >
@)
F, F Fs
F, F. Fs

(b)
Fig. 14.7

Solution: The beam isidealized with two elements as shown in Fig. 14.7 (b). Due to concentrated load, the
nodal vector is directly obtained since there is a node directly under the load. It is given by

0
0
-100
F =
0
0
0
Dueto udl, it is given by the expression
Ple
2
Pl
12
Fl =
{ }e &
2
Pl
12
_20 X ﬂ
2 3 Global Numbers
-40 |1
20 g ~26667| 2
O{Fis 4 (7] -0 [3
-20 x —
2 . 26.667 | 4
1
—-(—20) x —
(-20) x 5
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—20 x 6
2 & Global Numbers
-60| 3
20 % 60| 4
0{F)= =
€ _20 X 9 _60 5
26 60| 6
—(-20) x —
(=20) x5
O Dueto udl,
-40 -40
—-26.667 -26.667
{F} _ —(40 + 60) _ —(100)
26667 — 60 -33333
-60 -60
60 60
Hence due to udl and the concentrated |oad
-40
—-26.667
-200
{F}= Answer
-33333
-60
60

14.3 ANALYSIS OF RIGID PLANE FRAMES
USING 2 NODED BEAM ELEMENTS

The members of arigid frame differs from the beam in the following two respect:
(i) They carry axia loads aso and hencetheir deformation in axial direction also isto be considered.
(if) They are oriented in any direction in the plane.
The typical frame element is shown in Fig. 14.8. The element selected isin x —y plane. The right hand
thumb ruleis used for the selection of Cartesian coordinates. Let x' — y' bethelocal coordinate system.

The nodal displacement vector in local coordinate system is

T T —_— U 1
{0t=[0n & & & & @ ...(14.20)
and the nodal displacement vector in global system is,

[oll=[6 & & & & 4l ..(14.20)
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(@) (b)

Fig. 14.8 A typical frame element

It may be observed that,
03c= 04, C0s8+ O, SN B= J | + M

05.= —0gSiNB + 5,,c08 0= - Jm + Gl

Similarly
O = Ogel + Osem

5L = = 84em + O

Oge= Oge
where |, m are direction cosines
0{5}= [L}{a}, ...(14.229)
1 m O 0 0 O]
-m |l O O 0O
0O 01 0O OO
where [L]= o 00 | mo ...(14.22b)
0O 00 -m I O
|10 0 0 0O 0 1

o7 and 0, arelikethe degrees of freedom of bar element while &5, &3, J; and dg arelike the degrees

of freedom of beam element. Hence the stiffness matrix of frame element in the local coordinate system can
be obtained by appropriately placing the two stiffnesses as
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% 0 0 —'Iz—j 0 0
12El 6El 12El  6El
e o Y TE
o 6EL 4B 6Bl 2
[.=| e 12 le " 12 12
I a2
o _lB 6Bl 12B _6El
12 12 12 12
o 68 2® o _6El 4H
i e le N
From equation 14.10, we know strain energy of the element is given by
Ue= (@)L k] {01,
But from equation 14.22 {&'} = [L]{a}_
0Uz ([iel) [KLL[L]ieL,
={8.} [T [KILI{a}, = {o), [KL.[4],
...(14.24)

where [, =L [, ]

[K], is element stiffness matrix in global coordinate system.
Using stiffnesses matrices of all elements, system stiffness matrix [K] can be assembled.

Load Vector

Element load vector due to distributed load

Fig. 14.9
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Figure 14.9 shows the uniformly distributed load acting on the typical element. Noting that the load
acting isin y' -direction, the nodal force system in local coordinate system is

, pe pZ . Pl _plé

F'f =10 = —& 0 —& —-—/*%
{F'l. > 1 > o ...(14.25)
By transforming it to global system, we get, {F}. = [L]T{F "} . Using such expressions for al elements
theload vector of the system dueto the distributed |0ads can be assembled. Theload vector dueto concentrated
loads and external moments can be directly added to global load vector, since at all such loads nodes are

selected.

Thefina system equationis [K] {0} = {F} asusual. After introducing boundary conditional, the system
equationsare solved to get nodal displacement vector {d}. Then therequired stress resultants can be assembl ed.

Example 14.5: Assemble element stiffness matrices for the rigid frame shown in the Fig. 14.10 (). Explain
how do you proceed further to solve the problem. Take,

E = 200 GN/n?
|, =40 x 10 m
A=4x10°n?

20 kN/m

wenrElEERNSRNNNRRN
2 21, @)

©)
)
L 2 1 4
rrrrri rrrrr1
< g
4m

(b)
Fig. 14.10
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Solution: Figure 14.10 (b) showsthe positive directions of the 12 nodal displacements. Thusin this problem

{5}T ={d; & ... dp}

For any element, stiffness matrix is given by

L
e
12El 6El 12El  6El
0 3 2 0 =3 2
le le le le
0 6EI 4El 0 _ GEI 2El
[k] - Ie Ie le le
c-EBA o B 0
le le
12El 6El 12El 6El
0 —% —(= 0 5 T2
le le le le
6El 2El 6El 4El
0 - 0 -5
L Ie le le le |
Let ustake element and nodal connectivity as given below:
Element Node 1 Node 2
1 1 2
2 2 3
3 4 3

For element No. 1
I,=3,EA=200x 10°x 4 x 10°=800 x 10°N
=800 x 10° kN
El = El, =200 x 10° x 40 x 10° =800 x 10* N —m? = 800 kN —n?

[ 333333 0 0 -333333 0 0
0 0444 0667 0 -0444 0667
. [k E 800 —332333 0.267 l:i)ss 3330333 _0§67 0.3)67
0 -0444 -0667 0 0444 -0667
| 0 0667 0.667 0 0667 1333 |

For thiselement 8 =90, | =cosf@ =0 m=snf =1

0 Thetransformation matrix is
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O[k][L¥ 800

L] =
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O O O O O
o O O+ O O

0

0

|
[N

o O O O r O
o O O O o
o O O+ O O

-0444
-0667

0444
| 0667

o O O O
O O O O O

= O O O O O

333333

0
0

0.667
1333

-333333

0
0

O r O O O O

(LI (kL] = [T (kL)

1

[ 0444
0
~0667
~0.444
0
| 0667

=800

2

0
333333
0
0
-333333
0

3

-0667
0
1333
0667
0
0667

-0667
0.667

= O O O O O

4

-0444
0
0667
0444
0
0667

0

0

0
0444
0667

0
0444
0667

5

0
-333333
0
0
333333
0

-333333
0
0
333333
0
0

6

0667 |
0

0667

0667
0

<9,
\:

1

2

3

4

5
1333 | 6

0
0667
0667

0
~0667
1333 |

Global Numbers

For element No. 2, local and global coordinates are the same, and | =4m, | = 2|
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4 5 6 7 8 9 kti, Global Numbers
[ 250 0 0 =250 0 01 4
0 0375 0750 O -0375 0750| 5
0 0750 20 0 -075 10 6
[K],=[Kk'],= 800
2 2 =250 0 250 0 0 7
0 -0375 075 O 0375 -0.75( 8
| 0 075 10 0 -075 20| 9

265

For element No. 3, if we take it as member 4-3, we get the stiffness matrix identical to element 1.

However nodal displacement vector foritis [0,y J;; 0, & & &]. Hence
10 11 12 7 8 9 f, Global Numbers

[ 0444 0 -0667 -0444 0 -0667| 10

0 333333 0 0 -333333 O 11

[K]. = 800 -0667 0 1333 0667 0 0667 | 12

37710444 0 0667 0444 0 0667 | 7

0 -333333 O 0 333333 0 8

| 0667 0 0667 0667 0 1333 | 9

Brief Procedure for Further Analysis

(i)

(i)

(iii)

Stiffness matrix of the system [K] is of size 12 x 12. It can be assembled by placing the elements
of the element stiffness matrices [K], [K], and [K], in the appropriate positions of 12 x 12 matrix.

1= 4, =0.

They are imposed either by elimination method or by penalty method. When hand cal culations
are made the elimination method isideal. In this method, the elements corresponding to rows and
columns corresponding to 1, 2, 3, 10, 11 and 12 get eliminated and the stiffness matrix reducesto

There are six boundary conditions, namely 8,= 0, = 0; = § =

6 x 6 size corresponding to displacement vector {8} ' =[5, & & & & §]. If penalty

method is used, which is suitable for computer applications, 12 x 12 size of stiffness matrix is
maintained but diagonal elements corresponding to therows 1, 2, 3, 10, 11 and 12 are increased
by very large numbers.

The equivalent nodal forces due to the applied loads are as shown in Fig. 14.11.
Aprat from these loads, there isa 30 kN load in the direction 4. Hence the load vector is

{F}"=[0 0 0 300 —40 -26667 0 -40 26667 O O 0. In case of elimination

method of imposing boundary conditions, we get reduced load vector corresponding to the
directions 4, 5, 6, 7, 8and 9 as

[F}'=[300 -40 26667 0 -40 26667]
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(DZO)4DD 40 [20(4) 00 40
2 2
& &
N, 42
2 3 [(520)125 26.667
([120)‘11'2 00 26.667

Fig. 14.11

(iv) The system equations may be solved to get the nodal displacement vector.
(v) The member forces may be calculated as usual. The tensile force as positive is given by,

p=-(5,-8,) ...(14.26)

Ie

The bending moment and shear forces are obtained by:

62
_E -1 - 3
M= 12 (6 -3 & (1+F)e] 5s ..(14.27)
56
62
v=53'[12 6, -12 6l %
13 S5 ...(14.29)
56

(vi) Theendreaction vector, +veinthe +vedirection of degreesof freedom isobtained by the expression

{R} =[K]{o} - {F} ...(14.29)

14.4 A THREE DIMENSIONAL RIGID FRAME ELEMENT

Thetypical element isshown in Fig. 14.12. In this, there are six degrees of freedom at each node. Hence total
degrees of freedom are 12. It may be noted that the rotations are about the axes but not in the directions of
axes. Thus,

{5}T=[51 o, 0 .. QZ]

:[ul Vi W By Oy 6, U v, W, B, 6B, 6y ...(14.30)
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Ym

Fig. 14.12

267

The 12 x 12 stiffnessmatrix inlocal coordinate system, may be written down as shown in equation 14.31
by carefully noting the contribution of each nodal displacement.

Fig. 14.13

Vo A

(b)

(a) Orientation of beam element (b) Orientation of principle axes about x_-axis
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= 0 0 0
Ie
12El
0 32 0
Ie
12EI
0 0 - 0
Ie
0 0 0 GI'X
6El
0 0 -— 0
Ie
0 BEZ'Z 0 0
Ie
k| =
(=] _ea 0 0 0
IE
0 —125'2 0 0
Ie
12E
0 0 -— 0
Ie
Gl
0 0 o -
e
6El
0 0 -—t 0
Ie
6E
0 > 0 0
Ie

0 o -= 0 0 0
e
0 BEZ'Z 0 125'2 0 0
[ [
e e
6El 12E
-—2 0 0 o —
12 13
e e
0 0 0 0 o -
Ie
4El 6E!
Y 0 0 0 Y 0
[ 12
e e
0 &, 0 —BEZ'Z 0 0
le [
0 o = 0 0 0
IE
12El
0 —BEZ'Z 0 - 0 0
Ie Ie
6E 12E
- 0 0 0 - 0
[ [
e e
0 0 0 0 0 <
Ie
2El 6E!
5 0 0 0 —* 0
le 12
2El 6E!
0 z 0 -— 0 0
le 12

0

4EI,
[

e

...(14.3;1)

If the member axes do not coincide with global axes, we need transformation matrix. Figure 14.13 (@)
shows arbitrary orientation of the member axisin global system and Fig. 14.13 (b) shows the orientation of
principal axes of the member. Then the transformation matrix T works out to be

[L]=

(L] [0 [o [o]
[ [v] [d [o]
[ [0 [v] [o]

0 0 0 |[L]

...(14.32)

where L isa 12 x 12 matrix and each sub matrix on right hand sideisa 3 x 3 matrix. [L'] matrix is given by

Cx
—-C,Cycosa - C,cosa

\/Cf +CJ
C«Cysina - C,cosa

\/Cf + C2

c, C,
-C, C,cosa + C, sna
C2+ C2 cosa y 2 X
\/Cf +C2
C,C,sina - C, cosa
-JyC2+Clsna L= <
\/Cf + C2

...(14.33)
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In the above expression,

sz J I,Cy=yj J andCz= : i
| ls le

o=l 1)+ - ) (s =)

For the derivation of above transformation matrix reorders may refer to Krishnamurthy[1]

14.5 TIMOSHENKO BEAM ELEMENT

In the theory used so far, the assumption was made that the plane section before bending remains plane even
after bending. The plane section remain plane even after bending, means shear deformations are neglected. In
most of the beams bending is associated with the shear. Elementary bending theory shows that shear stressis
zero at extreme fibers and is maximum at the centroid of the cross section. These longitudinal stresses cause
varying strain in the plane section. Asaresult of these shear stresses, plane section will not remain plane after
bending. If the beam thicknessis small, these stresses are small and hence the assumption that plane sectionis
plane even after bending, gives good results; but in thick beams this assumption will not give good results.

Timoshenko beam theory recognieses that the action of the shear force causes a shear strain. This causes
warping of the beam element as shown in Fig. 14.14. The shear stressin general can be express as

o

Fig. 14.14 Warped beam element

and the shear force as

Q=Efrxzdzb ...(14.35)

where @,, isthe shear strain at distance z from neutral axis at section x.

However the use of general equations 14.34 and 14.35 complicatesthe problem and asimplified approach
ispossible. In order to account for non-uniform stress distribution at a cross section while still retaining one
dimensional approach, the equations 14.34 and 14.35 are modified using a shear correction factor asfollows:
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T=a Gp, ...(14.36)
and Q=1,A=0 AG ¢, ...(14.37)

The shear correction factor " o' isafunction of the cross sectional shape and Poisson ratio Y. Theterm
"aA isthe ‘shear area’ of the section associated with shear and may be denoted as A. Thus
A,=aAwherea <1 ...(14.38)

Vauesof a for various cross sectional shapes are given in the solid mechanics booksby DYM C.L. &
Shames |.H. [2] and Ugural A.C. and Fenster SK. [3].

Thevalue of a for arectangular section is 5/6. Hence,

__Q
Q= GA ...(14.39)
Timoshenko beam theory averages the effect of shear strain over the cross sectioni.e. it takes,
_g_ oW
Q= ox ...(14.40)

where @ is the angle through which the face of the cross section rotates after deformation as shown in Fig.
14.15.

Before deformation After deformation

Fig. 14.15

Now, in abeam element
do

M=El —
dx

M2 Bl %(doY
0 Strain energy due to flexure = JE dx = > J(d_) dx and strain energy due to shear
X
0

1
= E‘;E X shear stress x shear strain x dV
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=§Txy(0dV

Ie
=§% G ¢ dV=%G ASJ(G—?)(NJZdX
0

[0 Total strain energy of the element is
e 2 e 2
u:iaj% dx+£GASJG—@ dx ...(14.41)
2 5 dx 2 5

Finite Element Formation

Since according to Timoshenko theory 6 = 3—W 6 and w are decoupled i.e. they are independent of each
X

other, at every node there are two independent displacement components 9 and w. In a two noded beam
element they vary linearly. Thus,
w=N,w, +N,w,

and 6=N,;6,+N,0,
In matrix form,
Wy
el | o N, 0 N,||w, ...(14.42)
92
where N, and N, are interpolation functionsi.e. N;=1 - Il and N, = Il
e e
Using isoparametric concept, we have
X = Z N; X; ...(14.43)
d6 _ & N,
Now, — =) —6, ..(14.44
ow . iZl Pl (14.44)
W _ < 2 N,
2 = NG - ...(14.45
O & x Z i 6, Z v ( )

Strain vector
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. de
where kK iscurvature= —
dx

P
D{s}zK: dx x |_1[0 -1 0 1
of AN AN {1 l,b-x -1 x
dx ! dx

The stress resultants M and Q are related to strain as

[o1={ o} =Iolte
Now M = El k

For rectangular section | = 1—12bh3

E

0 D3 Ebh3
E abh
and = T, = hep = gA =—E
Q=A Ty=A N0=a 21+ 72
E .3
SERME PR fel it ol e]
Q 0 abh_|l¢) 12]0 6ajl®

2

0 Assuming ¢ = 0, D matrix for rectangular section is

_Ebh|h®> 0
[D]_?[o 60{} ..(14.48)

Okl [Tel [o)[e] ox

0 1

1%-1 I,-x|Eoh[h2 o]0 -1 0 1
-3 =N dx
zllo -1 |12

e 0 6al|l l.—x -1 x
1 X
0 1
le
_ Eth‘—l le—=x[| O -h? 0 h? o
122410 -1 ||6a 6a(le-x) —6a @xx

1 X
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6a 6a(l, - x) -6 6orx
_ Ebh J 6a(le-x) h2+6a(l,-x)° -&r(l,-x) -h? +@rx(l, —x) &
1212 9| -6a —6a (I — X) 6r —6rx
6ax  -h?+6ax(l,-x)  —Gax h? + Grx?
Separating bending and shear terms, we can write
0 0 0 O 1 o= X -1 X
| 2
£l0 h* 0 -h? o= X (lo=X%)" —le=%) X(le =X
[K]e= Ebf; J' h h +60 ¢ (e ) (e ) (e ) dx
121710 0 0 0 -1 —(le—x) 1 -X
0 -h* 0 h? X Xle=%x) =X X
e, K=kl t]e ...(14.49)

where [k],. and [k], arethe contributionsof bending and shear to thetotal stiffness. Theintegrations can be

performed to get [k],,. and [k]g as shown below:

0 00O
_Ebh*|0 1 0 -1
[K]se_ﬁ 000 0 ...(14.50)
0-10 1
1 e 4k
2 2
S R PO I+
=G4z 3 T2 6
L D " ...(14.51)
2 2
B R
|2 6 2 3|

The above formulation gives good results for moderately thick beams. For thin beams (Iﬁ very large),

the results obtained by this formulation are not correct. The shear term, which should tend to zero in such
cases, do not tend to zero. Thisis called shear locking. The shear stiffnessisincreasingly constrained. Thisis
called spurious constraint. There are two popular remedies for the elimination of this type of errors:

(i) Reduced Integration Technique

(if) Using field consistency element

(i) Reduced Integration Technique: If shear stiffnessin equation 14.49 isintegrated with one point Gaussian
technique, we get
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- . I . I -
2 2
el L1
_aGh| 2 4 2 4
[«]..= o | e 4 _le
> > ...(14.52)
le le e 1¢
| 2 4 2 4 |
since X:1+E,dX:—df
2 2
and f(&)dE = 2f(& =0)
In case of two point integration sampling points are at iﬁ and weight function W = 1.
Hence
- . I . I -
2 2
e 16l I
2 _aGh| 2 3 2 6
[]e= | | |
e -1 --£ 1 —_€e
2 2 ...(14.53)
le le Ll 1¢
| 2 6 2 3|

Now consider the analysis of a cantilever beam with single element (refer Fig. 14.16). The stiffness

matrix of the beam is
[K]=[K], =[K],e +[K]s

A

AA/’/__\ b=l|

>

Fig. 14.16
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. . _ o En® ER®
Applying the boundary conditions that w, = 0, ;=0 and defining ¢ = =—
121, 121
B= GIG h = aTGh’ we get the equilibrium equation from one point quadrature as,
e
5 28 8 25 |[o] (o
2 2
1powelp Lp Bl o
4 2 4 _
I I -
- - _ W. P
B - B B B ||
o wlp g welple] |m
2 2 4 2
B - B
2 w,| |P
l1.e., [ B +|2 ﬁ 92 - M
2 v 4
Solving the above equation, we get
2
w, = I—+£ P+iM ...(14.54)
a4 B 2y
lZP +M
and 0,= T ...(14.55)
In case of thin beam, 8 = (. Hence equation 14.54 reduces to
_1[p
W, = @[7 + M} ...(14.56)

and 6, remains same as equation 14.55. Thus the beam deformation is solely due to bending as shown by
equation 14.55 and 14.56. Hence for thin beams one point integration gives correct results.

If two point quadratureis used for integration, after applying the boundary conditionswe get the equations
as

L et

5B W
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Solving for w, and 6, , we get

pI?
g+
W, = ;lz P+ lMﬁ|2
+ S 2
do-) o]
M+|§P
+ -
v 12
In case of thin beams ( = . Hence we get
4P+6M
w, = BI ..(14557)
and ,= M ...(14.58)
1B

The above two equations show that the free end deformation depends on the coefficient 3 correspongind

to shear deformation, which is not true in case of thin beams. Hence two point integration (equations 14.57
and 14.58) lead to erroneous results.

Thus the reduced integration (1 point Gaussian integration instead of 2 point Gaussian integration) gives
better results than the exact integration. The reduced integration technique is used to get good results for thin
beams.

(if) Field Consistant Element Formulation: Let usfirst see how the element formulation isfield inconsistent
in the case of very thin beams. In the formulation we have taken,

Wy
w=[N; N,] {Wz} =N, w; + N, w,

Gl
and 6=[N; N,] o (= Nibi+ N, 6
2
1-¢ 1+¢&
where leTand N, = 5
and E=g—1

rearranging the terms, we get

=1_EW+1+£W _Wtw +W2_W1€

WeT WMt T ;¢ Tarad
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+
where a1=W1 o and &, = 22 1
similarly 0=Db +Db¢
6,+06 6,-6
where =21 2 and b,= 22
o 2 o 2
Now bending strain
KZ%Z%g :Eb2
dx d&dx |

and shear strain

g dw _ d¢ dw 2
¢=6-— “h+h{ TaxdE ThtRE TR

Strain energy due to bending is given by,

El (doY B (2. Y
Ub=§7 (&) o|x=§7 (Ibz) dx ...(14.59)

and strain energy due to shear is

2
GA, [ 2 _ fGA 2
Us=j;7(rp) dx —§2(b1-|az+bzrf dx ...(14.60)
Asthe thickness approaches zero, the shear strain energy should vanish and bending strain energy should
exist.

e bl—TZa2+bzf .0

. 2

i.e, bl—Ta2 -0 ...(14.61)
and b, -0 ..(14.62)

Theterms corresponding to condition 14.61 correspond to both the strain fiel ds flexure and shear. Hence
itiscalledfield consistant term. The constraint corresponding to equation 14.62 containsthe term corresponding
only to flexure field. If b, - 0, the strain energy due to bending tends to zero, which should not happen.
Hencethis constraint requirement in the limiting caseis spurious and it is this requirement which causes shear
locking.

To get rid of thissituation in the limiting case, the function smoothening isrequiredi.e. ater thetermsto
over come this situation. Thisis achieved by making b, = 0 in the shear strain field i.e. by taking

6= blzel;lez in the shear field

- 8,+6 1 116 - 116
Thus, 0= b1= 1 1 2 - l:z Ej| {Gl} = [Nl NZ] {Gl}
2 2
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i.e. in shear field interpolation function for 8 will be taken as [Nl Nz] = E %} . This smoothening is

required not only in the shear strain field but even in the shear stressfield also.

The greatest advantage of Timoshenko beam element is C* continuity problem isreduced to C° continuity
problem. The extension of thisconcept by Mindlin to plate bending problems, (to be discussed in next chapter)

isagreat achievement in the plate analysis.
QUESTIONS

1. Derivethe stiffness matrix for abeam element.

2. Analysethebeam showninFig. 14.17 using FEM technique. Determinetherotationsat the supports.
Given E =200GPaand | =4 x 10° mm?*.

:20 kN/m
Al @ B e
|« 6m ple 4m——
Fig. 14.17

(Ans. 8, =03, 6 = —0375; 6. =01625)

3. Assemble the stiffness matrix for a plane beam element oriented at angle 8 to the x-axis. Explain
itsusein FEA.

4. Assemble element stiffness matrix for the member of plane frame shown in Fig. 14.18, if it is
oriented at angle 30° to the x-axis. Take

E=200GPa, | =4 x 10°m*and A=4 x 10° m?.

7

o ©

30°

Fig. 14.18

(150025 86558 -012 -150015 -086558 -012 |
50070 0208 -86558 -50070 0.208

08 012 -0.208 04
(Ans) SYM 150015 86558 012
50070 -0208
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5. Explain Timoshenko Beam Theory. Discuss its advantages and disadvantages.

6. Explain the term Timoshenko Beam Theory and briefly explain the stiffness formulation for such
element.

7. Explain the term ‘shear locking’ as used in Timoshenko Beam Theory. How this problem is
overcome?

8. Taking theexample of asingle element cantilever beam, show that single point Gaussian integration
overcomes the problem of shear locking.

9. Explain what is meant by field consistant formulation to overcome shear locking in Timoshenko
Beam Theory. Use the example of asingle element cantilever beam.
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Bending of Thin Plates

15.1 INTRODUCTION

Plate is a flat surface having considerably large dimensions as compared to its thickness. Slabs in civil
engineering structures, bearing plates under columns, many parts of mechanical components are the common
examples of plates. Inthischapter, we are considering bending of such platesunder lateral loads. The bending
properties of a plate depend greatly on itsthickness. Hencein classical theory we have the following groups

(i) thin plateswith small deflections
(i) thin plates with large deflections, and
(iii) thick plates

In thin plates with small deflections theory, the following assumption are made

(8 Thereisno deformation inthe middle plane of the plate. This plane remains neutral during bending.

(b) Points of the plate lying initially on a normal to the middle surface of the plate remain on the
normal to the same surface even after bending.

(c) Thenormal stressesin the direction transverse to the plate are negligible.

1
Thistheory issatisfactory for plateswith ratio of thicknessto span exceeding b and theratio of maximum

1
deflection to thickness less then 5 Many engineering problems lie in the above category and satisfactory

results are obtained by classical theories of thin plates.

Stresses in the middle plane are negligible, if the deflections are small in comparison with thickness. If
the deflections arelarge, thein plane stresses devel oped in the so called neutral surfaces are to be considered.
Thisgivesriseto theory of thin plateswith large deflections, in which geometric non-linearity isincorporated.

1
If the plate has thickness to span ratio less than 10 th the assumption (&) and (b) listed under theory of

thin plateswill not hold good. Such plates need three dimensional analysis. Theory developed for the analysis
of such plates may be called asthick plate theory.

In this chapter, analysis of thin plates with small deflections with finite element approach is explained.
Since many stress-strain-displacement relation in the theory of thin plates with small deflection are used, the
limitations of classical theory remains in this finite element analysis also. The advantage of finite element
analysisisthat it can handle the structures with different end conditions and shapes easily.
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For the derivation of basic relations, readers may refer to standard text books on analysis of plates[1, 2]. In
this articles the necessary relations are listed taking the notations as indicated in the typical, plate element

shownin Fig. 15.1.

Fig. 15.1

It may be noted that, in Fig. 15.1, theright hand thumb rule of coordinate directionsisused. Thedeflections
are taken positive when they are in the positive directions of the coordinates. Stresses are taken as positive
when they are in positive directions on positive faces or when they are in negative directions on negative
faces. Moments are positive due to positive stress in positive direction of z

Let u, vand w be the displacement at any point (X, y, 2) in the plate. The variation of displacement u and

v across the thickness can be expressed in terms of displacement w as,

u=-z— and v=-z—
_au _d*w
I:lgx— 5(— 4 2 KXZ
0w
Ey —E - _Z? —KyZ
Y xy -g +% = =2K .z
2 02
where sz_M- Ky:—iz’ andKXy=

..(15.2)

..(15.2)
9w ...(15.3)
oxoy
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For thin plates, ¥, = ¥y, = 0.

Stress—strain relation for isotropic material is

Oy 1 u 0 Ky
_ Ez
Oy(= z |H 1 0 y
. 1-u 1- 4| |k
Xy 0 0 —/— | "w
2
The moments are given by
M, 1 u 0 Ky
Myr=Dju 1 0 Ky
M 0 0 1-p K xy
2
Eh® L .
where D = El = Pty and it is called asflexural rigidity
12(1- )

15.3 DISPLACEMENT MODELS FOR PLATE ANALYSIS

...(15.4)

...(155)

The development of displacement based finite element method within the frame work of classical plate theory
possesses an extralevel of difficulty. Thefact that classical plate behaviour ischaracterized by singlevariable
‘W’ has considerable advantagesin the derivation of governing differential equationsfor the problem. But the
problem of satisfying continuity requirements along the element edges based on the single variable w and its
derivatives creates considerable difficulties in the finite element modeling. Considerable research work has
taken place to develop suitable plate bending elements. All these works may be grouped into the following

three categories:

Category |: C2-Continuity element i.e. second order continuity elements in which seconderivates of ‘w’

are also nodal unknowns.

Category Il: C!-Continuity elementsi.e. first order continuity elementsin which highest order of derivatives

of ‘w' isoneonly.

Category Il1: C°Continuity element i.e. the elements in which only continuity of nodal variables are to be

ensured.

15.3.1 C-Continuity Elements

Figure 15.2 shows some of the C2-continuity elements. In the three noded triangular plate element nodal

- dered é\_Né\_Ndzwdzwandzw
variables considered arew, —, N ol ar aay




@

O »
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(b)

Ow

O

1

O
2

Fig. 15.2 C’-continuity plate elements (a) Three noded triangular plate element
(b) Four noded quadrilateral plate element (c) Four noded rectangular plate elements
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Hence number of nodal unknowns are 18. If fifth order polynomial shape function is used, there are 21
terms. By adding three normal slopesat mid-side asadditional unknowns, twenty one degree freedom triangular
element has been developed. An exhaustive references to such works may be seen in the books by Zienkwicz

[3], Dawe [4] and Gallaghar [5], Krinshnamoorthy [6]. Thus

W= Qg +0,X +... +0 o Y°

Using 21 conditions, 21 equations are obtained and the unknowns are expressed as

{6}, =[Cl{a}.

Asitisnot easy to obtain inverse of [C], stiffness expressions are devel oped using numerical method.

If quadrilateral element is used there are 24 degrees of freedom.

In case of rectangular element at each node only four degrees of freedom may be considered i.e. w,

ow o 9w
ox oy ' oxdy
limited.

. Itsformulation is explained in detail latter in this chapter. However use of this element is
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15.3.2 C'-Continuity Elements

ow ow
Tosimplify analysis, many researchers, considered only three degrees of freedom at anodei.e.w, — and —.

ox o
Thereisdiscontinuity of curvature at the corners. These are called non-conforming elements. The performance
of such elements have been studied and some researchers have expressed, satisfaction to great extent. Some
of them have considered the normal slopes a ong the edgesto improve the performance of such elements. One
of such element is 12 degree freedom rectangular elementsand itsuseisexplained in detail inthearticle. 15.4

15.3.3 C’-Continuity Element

Due to Kirchoff’'s assumption that plane section remains plane even after bending, we have the relations
w
oX

areindependent of deflectionsand hencew, 6, 6, as nodal unknowns reducesto C°-continuity requirement.

and 6, = d—N If Kirchoff’ sassumption isnot made, slopes

between the slopesand displacement as 6, = y

It simplifiesalot in the finite element analysis. Mindlin [ 7] developed an element of thistype. However it is

to be noted that giving up therelationship 6, = % and 6, = w means permitting shear deformations. Hence

in assembling stiffness expression shear strain energy is aso to be considered. This element formulation is
discussed in detail latter in this chapter.

15.4 Rectangular Plate Element with 12 Degrees of Freedom

In these elements C*-continuity isconsidered, i.e. at each node three degrees of freedom, namely w, ow and w

¥

are treated as basic unknowns. Hence it leads to 12 degrees of freedom per element. This type of element is
shown in Fig. 15.3. The typical element has size 2a x 2b. It may be noted that when seen in z—direction, the
nodes are numbered in clockwise directions.

A complete cubic polynomial has only 10 generalized terms. If we go for complete quartic polynomial,
there are 15 generalized terms. Hence to get geometric isotropy with only 12 generalized terms, drop the
terms corresponding to x*,x? y? and y*. Hence the generalized form of the displacement selected is,

wW=a,+ax +agzy +ta 4X2 A Xy o 6y2 o 7X3 o 8X2y 2 9Xy2 o 10)/3 o 11x3y +a, xy*
=[P|{a} ..(14.6)

Where [P]=[1x y X2 xy v 32y xy?y3 iy xy3]

Z_W =0, = 03+ asX +20 Y +a X + W oXy +I] 10y” 0 X +H Xy

ow
and E:9y=a2+2a4x +asy +377X2 +2 gxy +019y2 +3711X2yf712f
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0 » X
« = >
1
> 2
Nodal unknowns: For =1, 2,
2b 3and 4
Ow, D,
w;, , ——
e Oy

4 3

Fig. 15.3 12 degrees of freedom rectangular plate bending element

Substituting the values of x, y, for nodes 1,2,3 and 4, we get

Wy a;

0%, a,

6y as

W, ay

ox, as

0y, | _ 12 x12 Og

W - as

Ox, Og

0y Qg

Wy 010

6x, a1

0y,) | 11012
ie, {o}.= [G{a} ...(15.7)
or {a} =[G] {3}, ..(15.8)

The displacement within the element can be expressed in the form,

w =[P]{a} =[P][c] {5}, ..(15.9)
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The deflection field for any point can be expressed in terms of normalized coordinates as

4 4 4
w=SYNw+S$N'6, +§ N"6,
; I I ; I XI ; I v

...(15.10a)

Where N, =%(1+Efi)(1 +m7i)(2 +EE, M €2 2) ...(15.10b)
N = 'gm (L+&E) @+ )* (@ -m ) -++(15.100)
Ni”l - _%Ei (1 +£€i)2 (1 _€E|)(1 +nr] i) (1510d)

Where & and n are dimensionless coordinates, defined as

= X=X _Y _byc , X, Y, being the coordinates of centre of element
a

0w [N]{a)°

...(15.11)
It should be noted that the displacement field obtained by equations 15.6 and 15.10 are precisely the

same. The use of dimensionless natural coordinates & and 1 isfor simplifying.

The strain matrix [B] is obtained by referring to curvature terms as strains and the moments as stress
resultants.

_Ow
Kk ox°
el = kx _ 0% w —20,— 607X — 20 gy — @ Xy
Y N | = 206~ 209X ~ & 10y @ XY
Kiy 2wl |205-dagx —dagy —@x ;X% -G ,y°

=[Ql{a} =[Ql[c] {4}, = [B{s},

where [B] =[Q][c]™ ...(15.15)
in which,

20 0 -6x 2y 0 O -6xy O

0 -2 0 0 -2x 6y 0 by ...(15.16)
2 0 0 -4x -4y 0 -6x2 -6y
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In case equation 15.10 are used,
107N
a® o0&
1N
b® on? ...(15.17)
_20°N
ab déon

[B]=

The stiffness matrix relating nodal forcesM , M, M, with nodal displacements w, 6, oy isgiven by

[],= [[[B]" [Dl[Blaxdy = {[c]'} (H [Ql' [C][Q] dxdy)[e]-l ..(15.18)
or, if natural coordinate system is used
[K].= [ [[B]" [D][B][ 9] cé dn ..(15.19)

where | J | is Jacobian determinant and is equal to ab

If generalized coordinate form (equation 15.18) is used for stiffness calculations, the terms within the
integration signs can be multiplied and integrated explicitly. An explicit expression for the stiffness matrix
[K],, has been evaluated for the case of an orthotropic plate and is given in Zienkiewiez book[3].

If equation 15.19 is used, the integration is carried out numerically. It may be noted that the shape
function expression contain 4th order terms. Hence the second order differentiation termsin [B] matrix contain

second order terms. The stiffness matrix which hasthe form [B] " [D] [B] will contain 4th order termsin & and

N . Hence it needs 3 x 3 Gaussian integration to get exact solution (2n — 1)th order.

The lateral loads of both surface and body type are assumed to act at the middle surface. The consistent
load vector for distributed load on the surface is then given by

{F}e= [JINT (X<} axdy or {F},= [ [INT'[X.]| 3] déan

-1-1

={[G]-1}T [JIPT" £, axay ...(15.20)

If aconcentrated load W, is acting at a point whose coordinates are X_and y,, then its nodal equivalent is
obtained as

T

{F}ez_[[N] W, ...(15.21)

With the element stiffness matrix and the consistent load columns vector established, the assembly of the
system equations and the solution procedure follows as usual.

Non-conformity of the Element

Non-conformity of the element can be easily seen by considering two adjacent elements as shown in Fig. 15.4.

In this element, let common edge be along y = 0 and let nodes be 1 and 2. Since y = 0 the displacement
along this edgeis given by

W= aq+a,X +a X2 +a 73
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w=%=a2+2a4x + 30 %2

y

<

@)

The conditions available are

and

(b)

o | _ [ oWy
dxl (3x2
oW, | _ [ oW,
o"'xl (3x2
[M_dwl
dyl (}’y2
(éwz:sz
é’yl (}’y2

(©

Fig. 15.4 Non-conformity of 12 degrees of freedom
rectangular plate bending element

(1)
(2

WE)

(%)

(5

..(6)

From the conditions 1, 2, 3 and 4, we get four equationsin 4 unknowns o, ,a , ,a , and o . Hencethey

are uniquely determined. In other words w and Z—W satisfy the requirement of uniqueness along the common
X

edge. From the condition 5 and 6, we get two equation in 4 unknowns, namely a5,a¢,0¢ and a4, . Hence



Bending of Thin Plates 289

ow
it is not possible to get uniqueness of d_y along the common edge. These situations are shown in Figs 15.4

(b) and (c). Thus there is non-conformity of slope Z—W along the edge considered.
y

However the performance of the element is reasonably good when sufficiently finer mesher are used.
The results obtained by Gowdaiah [8] for a simply supported plate and a fixed plate, considering uniformly
distributed load are shown in Tables 15.1 and 15.2.

Table 15.1  Central Deflections and Moment of a Simply Supported Square Plate Using 12 Degrees
Freedom Rectangular Plate Element.

Mesh. Total No. of Nodes | Central Deflection. | % Error | Central Moment Mx | % Error
2x2 9 0.5063238 24.65 6.601858 37.83
4%x4 25 0.4328214 6.55 5.216951 8.91
8x8 81 0.4129367 1.65 4.891917 212
12x12 169 0.4091184 0.72 4.833032 0.9
Exact (Timoshenko) 0.4062 4.79

Table 15.2  Central Deflections and Moment of a Fixed square Plate Using 12 Degrees Freedom
Rectangular Plate Element.

Mesh Total No. w % Error | Mx, Centre | % Error Mx, Support % Error
of Nodes of Middle edge
2%x2 9 0.1479614 17.43 4.616477 99.84 -3.551136 30.78
4x4 25 0.1493343 11.38 2.778318 20.27 —4.760767 7.19
8x8 81 0.1303969 3.48 2.404827 4.10 -5.028381 1.98
12x12 169 0.128266 1.8 2.340618 1.33 -5.082736 0.92
Exact(Timoshenko) 0.126 231 -5.13

15.5 RECTANGULAR PLATE ELEMENT WITH 16 DEGREES OF FREEDOM

2

Bogner, Fox and Schmit [9] considered ow
oxoy

also as nodal unknown to overcome non-conformity faced in

ow ow *w
12 degrees freedom element. It leads to 16 degrees of freedom, namely w, — , — and at each node.
ox oy oxoy

The generalized form displacement considered by Bogner is,
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W= Qg +ax+a gy +a X +a XY gyt Ha X Cy B oy e oy +

3 2,2 3 3,2 2,3 3,3
QX7+ A XY™ A 13Xy +A 14Xy +0 15Xy H0 46Xy -..(15.22)

It may be noted that to get geometric isotropy, Bogner etal. [9] have considered the terms appearing in the
product (1 + x + x2 + %) (1 +y + y2 + y®). One can proceed on the lines explained for 12 degrees of freedom
element to assemble [P], [G], [F] and [B] matrix and then evaluate stiffness matrix. Size of the element
stiffness matrix in this caseis 16 x 16.

The above problem can be solved using natural coordinates and numerical integration technique. The
deflection field given by equation 15.22 may be expressed in the natural coordinates form using non-

dimensionalised coordinates & and n

4
=3 flw o+ ey + Yok y, ..(15.23)
1=1

2%w

oxoy

Where Oxy =

£, £, £ and ;'Y are Hermetian shape functions. Dawe D.J.[4] has presented these functions as,

Ny === (4-66 -67 +9n +Z°+2° -En° g7 €1 °)

'SIH

N2 flll —

m‘o'

TR RE VIR AR IR S IR AT R I T

No= "= 2 (2-26 -3 +3n -Z2+FH -7 +2° €A 87 &7 *n )

[E=Y
[e2]

N= V=2 (1-g-n win -E2 020 ? € €70 08 S ER EiF S ten® 2en® Y
No= o (4466 -6 -9 ~2°+21° +@n° +3 7 €4 °)

No= (243 ~27 -0 -2 ~Fn? +dn ° £ 49 * €4 7 &17 9
Ny = o (2-26+3) +3 +Z% 80 -qh €7°+2°n % 87 &7 7
Np = 20 (=g +n +en +€2 22 ° €4 €4 28d 26 Sn e &n 2en® )
No = (4+6 467+ -2 -21° -@n -3 €47
Nip= 2 (2 =% =20 ~&n +7 +d 2 €07 €7 £° 49 ° 4 “EF )
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Nu == (-2-26 - %0 +Z2+Fh <h° a8 &7 )
No =S (1 en e €727 Eh €A 8A T8 CER &7 Sen 2en® )
Ny = oo (466 460~ +2°-2° +dn° +3 7 €7 °)
N = = (243 =20 +3n +17 <h @2 €072 & 2B S
5= (2-26 v - -2 -Fh +qH 0128 2 &d CER )
Nm:%g(—uf—n vay +E2 2 PN ERCERTE 8 e Sen® Y
...(15.24)
Wheref=5andf7=z
a b
0w [N]{3}, ...(15.25)

Where [N] is the shape function matrix and {3}, = Nodal displacement vector.

Stiffness and load matrices may be assembled on the lines similar to 12 degrees freedom element and

system equations assembl ed. This approach needsfifth order Gaussian integrations, since the stiffness matrix
involves 8" order terms. Gowdaiah [9] developed a program to analyze plates using 16 degrees freedom
rectangular elements and studied the behaviour of square plates subject to uniformly distributed load. Tables
15.3 and 15.4 shows the results for simply supported and fixed plates:

Table 15.3 Deflections and Moments in a Simply Supported Square Plate Obtained by Using 16

Degrees Freedom Elements.

Mesh No. of nodes W centre % Error Mx, centre % Error
2%x2 9 0.4808683 18.38 5.085667 6.17
4x4 25 0.422946 4,123 4.669042 -2.53
8x8 81 0.4087133 0.619 4762794 -0.57
12x12 169 0.4072136 0.25 4.781559 -0.17
Exact (Timoshenko) 0.4062 4.79
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Table 15.4 Deflections and Moments in a Fixed Square Plate Obtained by Using 16 Degrees of
Freedom Elements.

Mesh | No. fonodes| W centre % Error | Mx, centre | % Error Mx, Support % Error
at mid span
2%x2 9 0.1324794 5.14 413357 -78.9 -3.179505 -38.02
4x4 25 0.132185 4,94 2.31496 0.215 -3.942102 -23.2
8x8 81 0.1279442 1.54 2.283149 -1.162 —4.533 -11.6
12x12 169 0.1270355 0.82 2.289747 -0.877 —4.749 -7.43
Exact (Timoshenko) 0.126 231 -5.13

15.6 MINDLIN’S PLATE ELEMENT

Mindlin’s[7] theory isthe extension of Timoshenko theory to the analysis of plates. In thistheory therotation
and lateral deflections are decoupled and shear deformations are considered. This resulted into development
of C°-continuity plate element. This helped in extending isoparametric concept in plate analysis resulting to

development of 4-noded quadrilateral and 8-noded quadratic plate bending elements.
Mindlin[7] retained the following assumptions of thin plates small deflection theory:

(i) Thelateral deflections‘w’ are small
(if) Stresses normal to the midsurface are negligible

However he gave up Kirchoff’ s assumption that plane normal to the midsurface remain plane even after
bending. Instead of this he assumed normal to the plate midsurface before deformation remains straight but

not necessary normal to it after deformation. Thisis shown in Fig. 15.5. Hence, if,

'«—— Normal before deformation
——— Normal after deformation

— Assumed deformation

Fig. 15.5 Deformation of the plate in xz-plane
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0, isthefinal rotation in x-direction, we get

6, = — -average shear strain in x-direction

X
. ow
e, 0= Ve
- ow
Similarly 0, = I -0, ...(15.26)

At any node there are three independent field variablesw, 6, and 6, . The displacement at any point

inside the element is given by

N

n i Wi

o O

: ..(15.27)

Xl

Z o

w
0,!=S |0 0
6,/ =i|o 0

o
z

i yi

where n isthe number of nodes in the element. For quadrilateral element n = 4 and

Ny 700 @ro-n)
4 4
@=8)@+n)
4

Similarly for quadratic element n = 8, and the shape functions are as given in equation 5.44. For cubic
element the shape functions are as presented in equation 5.46. The position of the point itself is given by,

RIS 1M

The measure of strain in this element includes both flexural strain k and shear strain €. The flexural
strain is given by.

(L+8)@+n)

%y
ox
Ky
a0
gr =4k, ¢ = d—yy ...(15.29)
‘o) 198, | 98,
X ay
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0 N 0
X

n
_ 0 o ON,;
-1 dy
o NN
| 9y OX

Shear strainis given by
ow _ N,

oX

—v | {9t

e = {(0)(} — ox
¢ @y diw -0 - Z ﬂ 0 N {6}e
dy dy !

- (8], =[o]Le: e,

_D(dex . y]
M, %, |
oit={M, =4 -D X 4
{ f} My (u Ix H dy]
v _D (1_ u) & + %
2 ady ady
_o N, oN,
OX ay
- _p . 0 oN, oN,
& 17D ay
1-uoN; 1-uoN;
2 oy 2 0x |
where D, = -D
o 9NN ]
] 17D ay
and [Bf] = 0 u% N,
& X ay
0 1-uJN;, 1-puoN;
i 2 oy 2 0x

...(15.30)

..(15.30)

...(15.32)

...(15.33)
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The shear forces, referred as shear stress resultants are given by

Qx| Yz
1o} = {Qv} ) GA{VVZ}

where A is area per unit length, since 6, and 0, are defined as the forces per unit lengthand v, , y,, are

shear strains and G is modulus of rigidity.
For isotropic platesthe relation is

i -ofs Y- 2l

since G= E
2(1+ p)
Q 0 o
0 {o *L = Gh X
{ S} {Qy} _%
y dy
n _dd,:l(i Ni 0 n _ddNi Ni 0
; _ON; 0 N e [S]; _ 0N, 0N {}e---( 34)
OX ay :

However for [D] acorrection factor a issuggested by Proger et. al.[10]. They suggest D_ may be taken
as Gha to represent the restraint of the cross section against warping. The value of a commonly used is 5/
6. Equation 14.31 may be written as

{os}= [DS][BS]{é}e
Where B_ is given by,

oN;
n -—L Ni O

ox

B, = ' ...(15.35)

Z -% 0 N,
X

Thelocal coordinates and the global coordinate systems can be related by using isoparametric concept

N Ny
ox | _ryp1) 08
on =B N ..(15.36)

dy on
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Where [J] is Jacobian matrix

x ) [§oN, N
[3]=| % %|_|& % ot "
x oy |TIgMN, N
a ool (2w 2
Now the stiffness due to flexure and shear together is given by
k=k+Kk,

=§[8/] [ ][B:] axay h + §[B.]" [D][B.] cx ay

...(15.37)

= §[8/] [ ][B:]13In 0¢ an + $[B.]" [D.][B.] 9] h 0 o ...(15.39)

Gaussian integration is used to evaluate[k]. Consistent load vector is obtained as usual, for uniformly
distributed load of intensity ‘g’

11
{F}= [ [INT" al9| & dn ...(15.39)
-1-1

The remaining part of finite element analysis follows the steps as usual .

Mindlin plate element gives good results for moderately thick plates. They can be used even for odd
shaped plates.

Unfortunately these elements behave very erratically in extreme thin plates. This has been the subject of
interest in 1970s, 1980s and lot of research [11-14] has gonein to get rid of the problem faced in extremely
thin plates. Zienkiewicz etal. [11]. showed that the lack of field consistency in field definition introduces
spurious constraints. This can be removed by an appropriate integration strategy.

Ideally, for aconsistent definition of shear strain, one must have associated with each term of the polynomial
expansion of the shear strain field, contribution from bothwand 6, andwand 6, interpolations. This can be

achieved only if unequal order interpolations are used for w and the rotation terms. If equal order is used it
turns out that some of the term in shear strain field have contributions only from the interpolations for face

rotations @, and 6, . In case of extremethinness, these terms severely constrain the behaviour of therotations

0, and 6, . Thissituation is termed as shear locking.

Hughes etal. [12] has successfully used uniform one point integration for shear strain energy termsand 2
x 2 integration for bending energy terms. The element behaves very well in this thin plate situations but
restricts the use of the element beyond a moderately thick situation. Pratap and Viswanath [10] suggested an
optimal integration strategy for 4 noded Mindlin plate bending element. The strategy suggested incorporates
a2 x 2 Gaussian integration of the bending energy and separate 1 x 2 and 2 x 1 integration rulesfor the shear

energy contributions from the % -0, | and % - 6, | terms respectively. The results are good for

moderately thick to thick plate situations, especialy if local axes £ and n are aligned with global x and 'y
axes.



Bending of Thin Plates 297

It may be noted that the Kirchoff’s constraint in thin plate theory is dependent on x and y orthogonal
Cartesian system. With the distortion to non-rectangular forms or with the arbitrary orientation system, it is
impossibleto deviseasimpleintegrations strategy that will correctly retain all valid constraints. Thisdeficiency
felt more severely in thin plate situations rather than thick plate situations.

The derivation of element properties based on Mindlin plate theory is incorporated in many standard
Finite Element Analysis packages. It allows the use of isoparametric concept, hence more general element
shapes, such as quadrilateral and quadratic can be devised. The shape functions and element routines are also
simple compassed to C*-continuity elements. With the judicial selection of the order of integration the same
element may be used both in the analysis of thin plates and moderately thick plates.

Need for Stress Smoothening

In the finite element analysisit is proved that
1. Stresses are discontinuous at nodes.
2. Stresses at interior of the elements are more accurate. And
3. Stresses obtained at Gaussian points are accurate.

The stress discontinuities obtained at node points are shown in Fig. 15.6. Hence there is need for stress
smoothening.

Fig. 15.6  Stress discontinuities at nodes

Stress Smoothening Technique: Initially it wasthought that at node point the average of the values obtained
from different elements may be taken. But this technique has draw back that it is not considering the size
effect of the various elements meeting at that node. Finally it is accepted that since Gauss point values are
accurate, they may be used for bilinear extrapolation and nodal values cal cul ated. Thistechnique was suggested
by Hinton and Campbell [15].

For a2 x 2 Gauss point integration bilinear extrapolation may be done as explained below:

Let g,,0,,03, and g, benoda valuesto be obtained by extrapolationsand o, , 0, ,0,, and g,
be the values at Gauss points as shown in Fig. 15.7. In two point Gauss integrations the Gauss point are at

. 1 1 L=
(0.57735,0.57735) i.e. at (— —j From the centre. To find g, first we canget o} and g5, values by

V3’43

extrapolating o, , 0, and g, and g, vauesasfollows:
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Fig. 15.7 Bilinear extrapolation of stresses

oy=0,+ (0 ‘Un)[g _%J
05 = U|v+(0|v“7n|)[§ _%J

Now linearly extrapolating between g} and ¢/, to get 0_1 , We get

__ I I I ‘Jé 1
o, =01+ (01~ 03) >3

=0, +(0 _UII)[é _%]+[0I + (0, _UII)[é _%J‘Uw ‘(Ulv‘Unl)[ﬁ _E]]

2 2
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Similarly the values at other node points may be obtained by bilinear extrapolation to get the following
relations:

o
! 1+ § _E 1+ 2’ _E g
2 2 2 2
2 1 1+ 3 1 1- 3 O
_| 2 2 2 2
- 3 1 3 1
ol V2 T2 Mz T2 ||
o _E 1_ § _E 1+ § o
. L 2 2 2 2| oW

QUESTIONS

1. Discussthe use of triangular plate bending elements.
2. Discuss the conforming and non-conforming rectangular plate bending analysis.

3. Explain the term Mindlin's C°continuity plate element and briefly explain stiffness matrix
formulation for such elements.

4. Explain the term * Shear locking'. How this problem is overcome?

5. Write short notes on numerical integration and stress smoothening in the case of four noded
quadrilateral plate element.

6. Write short notes on
(i) Triangular plate bending elements
(if) Conforming and non-conforming plate bending elements
(iii) Mindlins C’—continuity element
(iv) Shear locking and
(v) Stress smoothening as applied to plate bending analysis.
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Analysis of Shells

16.1 INTRODUCTION

A shell isacurved surface. Dueto their shape they transfer most of theload applied on their surface asinplane
forces (membrane forces) rather than by flexure. Hence the shells are examples of strength through form
rather than mass. Civil engineers use them as roofsto get large column free areas covered. Cylindrical shells,
domes hyperbolic parabolic shells etc. are common examples of shell roofs. Cooling towers, conical shells
are also commonly used shells. Mechnical and chemical engineers use shells as pressure vessels and as
components of many machines.

Shells may be classified as singly curved or doubly curved. Classification of shell surfacesis attempted
on the basis of Gauss curvature (product of principle curvature in two perpendicular directions). If the Gauss
Curvature is positive, zero, negative the surface will be classified as synclastic, developable, anticlastic
respectively. Further classification is possible depending upon whether a shell istranslational surface, aruled
surface or a surface of revolution. Indian standard code 2210[ 1] gives the classification of shells and folded
plates by various criteria.

Asmost of the load istransformed asinplane, the shells can be thin resulting into considerable reduction
in material cost. In addition shells have aesthetic advantage. However the cost of form work required for
reinforced concrete make shell roof expensive. Unless there is chance of several reuse of form work shell
roofs are not used. For details of classical shell theory one can refer the book by Ramaswamy [2]

In this chapter, first various forces developed in a shell elements are explained. Then various finite
elements developed are briefly explained. Finite element formulation for 4-noded degenerated shell element
is shown and it is hoped that reader, if need be, will be able to extend the finite element formulation to 8-
noded degenerated element also.

16.2 FORCES ON SHELL ELEMENT

Fig. 16.1 shows atypical shell element and various stress resultants acting on it. It may be noted that the sign
convention is:

(i) Coordinate direction are as per right hand thumb rule
(if) A force acting on +ve facein +ve direction or —ve face —ve direction is +ve
(iii) A +veforce acting on +ve z-direction produces +ve moment, about mid surface
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(a) Stress resultants (Forces)

(b) Stress Resultants (Moments)

Fig. 16.1  Stress resultants

16.3 FINITE ELEMENTS FOR SHELL ANALYSIS

Curved shell structures constitute possibly the most difficult class of structuresto analysisby thefinite element
method and the difficulties involved have lead to the development of considerable variety of approaches to
the problems and a large number of element types. The following are the four different approaches used to
generate the shell elements:
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1. Flat Elements
2. Curved Elements
3. Solid Elements
4. Degenerated Solid Elements.
The above elements are briefly explained below and their performance is commented.

1. Flat Elements

The earliest method to analysis shells by finite element method was to approximate the curved surface with a
number of flat elements. Fig. 16.2 shows approximation of acylindrical shell roof by anumber of flat elements.
Since shell, have bending as well as in plane forces, for flat element stiffness matrix should be assembled
using both plate bending consideration and considering in plane forces. Fig. 16.3 showsin plane and bending
forcesto be considered. One can usetriangul ar, rectangular or quadrilateral plate elements. Smaller the element
size, better is the result. The development of such shell elements progressed along with the development of
plate elements. Using such elementsarch dams, cylindrical shell roofsand cooling towers have been successfully
analysed by zienkiewicz et a.[3, 4, 5]

(a) Actual shell surface (b) Approximated shell surface

Fig. 16.2 Flat elements used for shell analysis

The shortcomings of these flat elements (also called as Facet Elements) are as listed below:
(i) The curvature of the elementsis absent within the element.
(if) The discontinuities of slope between the plate elements produce spurious moments.
(iif) The plate elements themselves have limitationsin the analysis of plates, which continues to stay
in the shell analysis too.
However singly curved shells may be analysed satisfactorily by taking refined meshes.
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»
»

Fig. 16.3 (a) Inplane forces and deformations (b) Bending forces and deformations

2. Curved Shell Elements

There are a number of practical problems in which we come across axi-symmetric shell analysis. Fig. 16.4
shows one such case.

\« Axis of rotation

Fig. 16.4 Axisymmetric shell

In this problem of thin shell analysis, the displacement and stress resultants may be defined with respect
to meridional directions (u, Ng, My) and circumferential directions (w, Ng , M) . Thusthe strain vector is
given by
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ou
< os
u .
£ (wcosp + using)
er=y, (= -0%w
s 92 ..(16.2)
K —sing dw
r ds
and stress resultant is given by
NS
Ng
o= =[D|y&
l Mg [Clie} ..(16.2)
Mg

For astraight edged element, suitable for the analysis of conical shells[B] matrix can be assembled easily

and stiffness matrix '[[B]T [D][B] dV can be assembled. For curved shells one hasto ensure common tangent

between adjacent elements which needs C*—continuity elements. Using isoparametric concept axi-symmetric
shells have been analyzed [Jones etal. (6), Stricklin (7)]. After getting nodal displacement, the stresses at
required points are obtained. Gallagher [8] lists the following difficulties in the development of such shell
elements:
1. For assembling [D] matrix suitable shell theory is to be used, but there are a number of shell
theories.

2. Itisdifficult to achieve inter element compatibility as seen in plate elements.
3. Describing the geometry using given element datais difficult.
4. The satisfaction of rigid body modes of behaviour is acute.

3. Solid Shell Element

Another approach for shell analysisisto use three dimensional solid elements. One can think of using 4 noded
tetrahedron, 8 noded hexahedron or 20 noded curved solid elements for the analysis of shells. To take care of
bending behaviour morethan onelayer of elementsareto be used acrossthe thickness. However thisapproach
for shell analysisisfound not satisfactory because of the following reasons:

(i) Asthethicknessreducesthe strain normal to the mid surfaceisassociated with very large stiffness
coefficients and hence the equations become ill conditioned

(if) These elements carry too many degrees of freedom making the computation uneconomic.

4. Degenerated Solid Elements

In 1970 Ahmad etal. [9] introduced the concept of degenerating 3-D-elements to 2-D-elements for finite
element analysiswhile using 3D- elastic theory. For example, a3-D brick element isreduced to shell element
by deleting the intermediate nodes in the thickness direction and then by projecting the nodes on each surface
to the mid surface as shown in Fig. 16.6. Similarly 20 noded solid element may be degenerated to 8 noded
element on the mid surface which is also shown in Fig. 16.6. However the nodes on the 2 outer surfaces
corresponding to each mid-surface nodes are defined so asto keep the analysisin 3-D. Thetheory isdevel oped
with the following assumptions:



306  Finite Element Analysis

4 noded 8 noded
tetrahedran hexahedran

20 noded curved solid element

Fig. 16.5

00a ka2

4 noded degenerated
shell element

8 noded degenerated
shell element

Fig. 16.6 Degenerated shell elements

(i) Thenormal stresses and strain in the direction of thicknessis zeroi.e. g,,=0,¢,, =0
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(i) The normal to mid surface may not remain normal after deformation, but remains straight (as
used in Mindlin plate theory).

Hence the strain energy associated with stresses perpendicular to the middle surface are neglected but
due to assumption (ii), the shear strain energy is to be considered.

The elementsneed only C° continuity. Thissimplifiesthe analysis. However the problem of shear locking
isassociated; particularly when the shell isthin. Thisisto be overcome by using reduced integration technique
as explained in using Timoshemko beam element and Mindlin plate element. The author guided M.Tech
thesis [10 — 13] in this field at K.R.E.C. surathkal, reference [11] being jointly with Dr. Pratap G of NAL,
Bangalore,

16.4 FINITE ELEMENT FORMULATION USING FOUR NODED
DEGENERATED QUADRILATERAL SHELL ELEMENT

Finite element formulation for 4 noded degenerated quadrilateral is presented below. On the same line one
can extend it to the FEM formulation for 8 noded degenerated shell elements also.

Fig. 16.7 shows the typical four noded degenerated quadrilateral shell element. x,y,z are the global
coordinates and &,n,¢ are the natural coordinates. & = 0 represents the mid surface. & =1 represents
outer surface of the shell and & = —1 represents the inner surface. For defining geometry as well as
displacement, the shape functions for quadrilateral elements are

O

Fig. 16.7 Coordinate system for 4 noded degenerated shell element

N; (¢,n) =%(1+€€i)(1 +nn+;) ..(16.3)

If 1, m, and n, arethe unit normal vector ati and x, y,, z arethe global coordinates of the middle surface
node i, then the global coordinates of any point in the element at distance ¢ on normal are given by
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X 4 X |5
yh= N Em|{y +5% My .(16.4)
z| 1 z Ny

Local Direction Cosines
The determination of the direction cosines is the important process in the finite element analysis of shell

structures. At any point having the coordinates (E ,q) on the middle surface, an orthogonal set of local

coordinates X', y', Z areconstructed €, € be the tangents to the middle surface. From vector algebra, we
know that the cross product of two vectors gives a vector oriented normal to the plane given by the two
vectors, we a'so know that unit vector is obtained by dividing the vector by scalar length. Hence €] , €, and

e; can be found from the following relations:

|3
= I VxVs (165
€ my {|V1XV2|}E,U
ly ATy
e = m, 1o} x Moo ...(16.6)

| ety * Mo

V, and V, can be obtained from equation 16.3.

X',y ,Z with respect to global axesx, y, zare given by

Ll s

[DC]=|m m, m,

and e=1l, = {eé}é,n x {%'}(M) ...(16.7)
I3
o ox
173 on
V, = 9y and V, = 9y
173 on
oz oz
173 on

Now the direction cosines of the new loca coordinates

..(16.8)
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Displacement Field

Letu, v, wbedisplacement of apoint having itslocal coordinate; u, v, w, bethe displacement of corresponding
mid surface which is having local coordinates &, (ref. Fig. 16.8)

Fig. 16.8 Displacement field in 4 noded degenerated shell element

Let u: , v? , W,* betherelative displacement along X, y, z directions due to rotation of normal at nodei. i.e.
0, , 0y , 85 about the global axes. Then

u 4 U U
v :ZNi Vi btV ..(16.9)
w 1=1 VVI Vvi*

If o} ,a% ,a'y arethenormal rotationsat ‘i’ about axes x', y', Z with the shell assumption of straight

normal to middle surface remain straight even after deformation, a5 becomes zero.

h Qi
0w =450y ..(16.10)
W 0

inwhich u',vi ,w aredisplacementsalong axes x',y',Z respectively.

If the direction cosines between global and local axesarel,, m, n, ; 1, m, n,, I, m, n,, then

*_ U I
U =1y U+ Ly v

Vi = my g my v
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U ly i | |Y
ie, Vi fEmymy v ..(16.12)
W: My Ny
Therotation a,; and a,; aregiven by therelation,
0.
ax) s my nyg) | (16.12)
6
From equation 16.11, 16.10 and 16.12 we get,
u Ly 0,
. | . . Nos Xl
7 =qmy My EE|:_TI _rnZI _2| i| eyi
. 2 i Ty My
W, Ny Ny 0
= 2 g 0y |18y = ZE Ny B, +15 6 ..(16.13)
ol 0 |16y My 6, — 15 6y
Substituting equation 16.13 in equation 16.9 we get
u 4 Ui h Ny 6y — my 6,
Vo= Z Niqvi ¢+ 3 Ny 0y — 13 05 ...(16.14)
wj 1 W My 6, — 13 6y

Strains and Stresses

Assuming the component of strain normal to the middle surface of the shell element is zero, the strain
components along the local axes of the shell element are given by,

L
0,
sx’ ﬂ
Sy, dy’
{g'} =3y = ﬂ + ﬂ
Xy ox oy ..(16.15)
e | |, ow
Yyz 702"  ox

N, ow
0z oy
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For the convenience, the strain matrix is split into two matrices [&},] and [€] as

8'

X

{em} =18 ...(16.16)

yx’y’

P Y xz
and {em} = ..(16.17)

yy’z’

The stress components corresponding to these strain components are defined by the matrix,

Oy

gy
{0} =17y ..(16.18)

Ty

Ty
=[o]{¢'} =[D][B] {3} .(16.19)

where [D] isthe constitute matrix of size5 x 5, given by
(1 u O 0 0 |
1 0 0 0
£ |00 1_7“ 0
[D] = 5 ...(16.20)
- 1-ya
1-4%0 0 o ( 2“)
1-ya
0 0 O 0 ( 5)

. . _ 5 . . .
The factor a included in the last two shear terms is taken as 5 and its purpose is to improve shear

displacement approximation as explained in Timoshenko beam theory and Mindlin’s plate theory.
The constitutive matrix [D] can be split into

D, O
[D]=[O DJ ..(16.21)

..(16.22)

o o

1
where [Dn] = _E s
0
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and [Dg] = ..(16.23)

Jacobian Matrix

To establish the transformation of derivativesfromlocal to global system we need the Jacobian matrix, which
isgiven by

ON; oN;
173 ox

ON; oN;

o= ...(16.24)
on ay

oN; oN;

174 0z

Jacaobian [J] is given by,

ox oy 9z |

06 0¢ 0

ox oy oz
Jl=1—= == =
[J] an o an ...(16.25)

ox ody o0z
o d A&

Strain Displacement Matrix
The general relation between strain and displacement is given by,
{e} =[B] {5}
[B] matrix isdefined in terms of the displacement derivativeswith respect to thelocal Cartesian coordinates
X",y ,Z by equation 16.15. Now we require two sets of transformations before the stiffness matrix can be

assembled with respect to the coordinates &,n ,{ .

Firstly, the derivatives with respect to the global x, y, z directions are obtained by using the matrix
relation

o noowl v ow]
X ox oOx o0& o0& O¢
dy dy dy o am on (16:26)
ou N ow du v ow
|0z 0z 0z |0 o o




Analysisof Shells 313

au ov
The derivatives 0"_6 0_0 ... etc. are obtained using the equation 16.14.

Secondly the direction cosines of the local axes are to be established. Then the global derivatives of

displacements u, v, w are transformed to the local derivatives of the local orthogonal displacements by a
standard operation,

N ow ] M N ow
ox' ox  ox ox ox Ox
o' N ow -1l 0u v ow
noNw u doow
|0z 07 07 | |0z 0z 0z

Making use of the equations 16.6 and 16.27 al the derivatives necessary to compute {€'} of equation
16.15 can be obtained. After simplifying, the equation 16.16 and 16.17, we get.

4 U 0
{ent= Y [[Bulivi ( + [[Ban] + <[Bam]] 10 .(16.28)
i=1 W Gzi
4 U 0,
and {est= |[Bislyv +[[Bas] + Z[Bus]] |0y ..(16.29)
= W 0,

where[B,,; | and [ B, ] arestrain-displacement matricesformed by considering only thein plane displacements

u', v, W and [Byi],[Bas],[Bami] [Bss] are strain displacement matrices formed by considering only
relations 9y , 0y, 6, - By orthogonality condition, the strain displacement matrix [Bzmi] will be zero. The
other terms are given by

LB (1i) mB(@i) nB(1i)
(8,m] = 1,B'(2,i) mB(2,i) n,B(2,i) (1630)
l,B'(2,i)+ mB'(2,i)+ nB'(2,i)+
|1,B'(L,i) mB'(Li) nB' (i)

inwhich B(1,i) = ddNi W+
X y

ON, +(5’Ni
M 0z

n
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L _ON,,  ON, 0N,
B'(2.1)=— ot oy ™t e ..(16.31)
i B'(L,i)(my ny — ng my) B'(L,i)(ng Iy — 15 ) B'(1,i)(Ig m — myly) ]
q_h B'(2,i)(mgn, —ngmy,)  B'(2,i)(ngl, = Igny) B (2,i)(I3my— myly)
[Bn] =5 (16.32)
B'(2,i)(mym —ngm)  B'(2,i)(ngly—Ign)  B(2,i)(Igm - myly) |
|+ B'(Li)(myny —ngmy) +B'(Li)(ngl; —13ny) +B'(Li)(Igm —myly)]
[1,B'(3,i)+ mB'(3,i)+ B (3,i)+]
I;B'(1,i)  myB'(1,i) ngB'(1,i)
Bal=| | |
l,B'(3,i)+ m,B'(3,i)+ n,B'(3,i)+
[I3B'(2,i)  myB'(2,i) ngB'(2,i) |
Where B'(3,i) = 00'\)1: |5+ N, m + da,\ii Ny .(16.33)
, =EN'B,,{”‘3&W‘”3”\) Ngli = lan Isim_rnsilij|
(B ] 2 MyM=Ngm, Ngly=lyn) lgm-myl, -(16:39)
where B"= I3 35+ My Jog+ N3 Jgg ...(16.35)

[B'(3,i)(my - ng my) B'(3,i)(ng I,— 15 ny) B'(3,i)(Ilym—myly) |
h|+ B @My ng=ngms) +B'(Li)(ngls=lgns) +B'(Li)(Iy my—myls)
2 B'(3,i)(mim—nymy) B (3i)(nglp=15n)  B(3i)(lam-myly) |-(1639)
|+ B'(2,i)(my ng—ngmg) +B'(2,i)(ng I5— lang) +B'(2,i)(lg my—my ) |

[Bw] =

Thus,

{e'}= {:} = Z[z' BZS_ZEB;"Eigsg ]} {3}, ..(16.37)

Where o =[u v w 6 6, 6,] ..(16.38)
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Element Stiffness Matrix
Asusual stiffness matrix is given by
[k] = §[B]" [D] [B] av ..(16.39)

It is convenient to split stiffness matrix into two parts
[K],,, — contribution due to bending and membrane effect
[K], — contribution due to transverse shear

i‘e" [k] =[k]m+[k]s
4 4
- Z Z[[ku] +[]] ..(16.40)
where [kij]m= § [B. ]T [D,,][Bui] AV ...(16.41)
and [ki].= $ [B<] [OnllB] oV .(16.42)
In natural coordinates form, the above equations will be,
111
= J.J.J.[Bmi]T [Dm] [Bmi]| ‘]| df 0’7 dZ '“(16'43)
-1-1-1
111
= [ [[Bs]" [D:] [Bs]] 3] 0€ an 0z ..(16.44)
-1-1-1

Where | J | is the determinant of the Jacobian matrix. To be consistent with the shell assumption instead

of ‘ ‘](E,n,Z) ‘ we can take it as ‘ ‘](é,n,O) ‘ .

The size of each sub matrix in equation 16.43 and 16.44 is 6 x 6. Hence

8
k21 k22 k23 k24
A (A S R

[ki] [ka2] [kas] [Kad]

A 2 x 2 Gaussian integration is used to evaluate [K] . To avoid shear locking effect one point Gaussian
integration is used to evauate [K] .

...(16.45)

Equivalent Load

For a shell the major loads are vertical gravity loads, uniform vertical pressure and uniform normal surface
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pressures. The equivalent nodal loads for these can be found by variational principle as shown below:

(i) Gravity Load:

0
0
11 N
{Ry=[]pi, t13lo€an
-1-1 ...(16.46)
0
0
where P isunit weight of the material of the shell.
(if) Uniform Vertical Pressure: If intensity of thisload is P, on top surface of the shell, then
0
0
11 N
Fl= Py ' J||a| 9& on ..(16.47)
_Om Ni |3|
0
oxdy oxoy\ (dxoz oxoz) (dydz dyoz)
Where a|= || XY XY\ JOoX0Z_OXO0Z| | 0YOZ_OYOZ (16.48)
ogon on o on o9& 9é on o¢ on  on %

(iii) Uniform Normal Surface Pressure: If p, isthe uniformly distributed normal surface pressure, applied at
top surface, then due to this load equivalent nodal forces are,

N; I3
N; mg
11 N n3
{Ri=]] pPn ' 13| | | 98 an ...(16.49)
Ul 05h (ngmg — my1y)
05h (I3ng = ngl3)
05h (mgl5 = 13mg)

In any problem global stiffness matrix [k] and right hand side (load) vector [F] are assembled after
calculating them element by element and then placing them in global system. The standard procedure is
followed in solving the simultaneous equations after imposing the boundary conditions and in calculating the
required stress resultants.

The above procedure may be extended to 8 noded degenerated shell elements also.

Using degenerated shell elements lot of studies have been carried out and satisfactory performance is
reported. 4 Noded elements approximate the curved surface by straight edges. Hence to get better results we
need more elements. 8 noded degenerated shell elements approximate curved surface by quadratic curve.
Since most of the shell surface are having quadratic surfaces, 8 noded shell elements are used commonly.
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QUESTIONS

List and sketch the variousflat elements used in the analysis of shells mentioning the nodal degrees
of freedom in each element.

Explain briefly the various factors to be considered in the development of curved shell elements.
Explain with neat sketch the various three dimensional elements used in the analysis of shells.
Write short notes on the following shell elements
(i) Facet elements
(if) Curved elements
(iii) Solid elements
(iv) Degenerated elements.
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Non Linear Analysis

17.1 INTRODUCTION

The finite element formulation discussed so far was based on the following assumptions:
(i) Stress-strainrelationislinear and
(if) Strain displacement relation isalso linear.

It resulted into stiffness equation [k] {8} = [F] inwhich [K] and { F} were independent of displacement

{6} . Hence after forming the stiffness equation we could get required displacements by solving the set of

linear equations only once.

In engineering we come across many problems in which stress strain and strain displacement relations
arenot liner. Asthe computer facility isincreasing, the researchersare taking up rigorous analysis of structures
incorporating actual stress strains curves and changes in geometry due to loading. In 1993 International
Association of shells and spatial structures, conducted an international seminar on Non-linear analysis at
Tokyo[1] inwhich the author also published apaper [2]. In al 68 paperswere presented in the conference. In
this chapter different types of non-linearities encountered are discussed first and the methods of solving them
presented later.

17.2 NON-LINEAR PROBLEMS

Various non-linear problems in finite element analysis may be grouped into the following three categories,
the basis being the sources of non-linearities:

1. Material Non-Linearity Problems

2. Geometric Non-Linearity Problems and

3. Both material and Geometric Non-linearity Problems.

1. Material Non-Linearity Problems

The stress-strain relation for the material i.e. the congtitutive law may not be linear and may be some times
time-dependent too. For example, for concrete actual stress strain curve is as shown in Fig. 17.1. Even for
stedl, if one is interested to study the actual behaviour of the structure beyond yielding, the stress strain
relation is non-linear. Hence Y oung’s M odulus depends upon the deformation. Apart from these basic non-
linear relations, there are time dependent complex constitutive relations like plasticity, creep which make the
problem non-linear. In soil mechanics problems, almost all soils need consideration of plasticity.
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Stress ——»

Strain ——»

Fig. 17.1  Stress-strain relation for concrete

Stress ——»

Strain ——»

Fig. 17.2  Stress-strain relation for steel

2. Geometric Non-Linear Problems

In many problems strains — displacement relations are not linear. They need consideration of actual strain
displacement rel ations (equation 2.5) rather than thelinear strain displacement (equation 2.6). Large deflection
problems like the analysis of tension structures and post buckling studies of beams, plates and shells also fall
under this category.

3. Both Material and Geometric Non-Linearity Problems

If the large deflection, post buckling studies, etc. involve non-linear constitutive laws, then we need to study
both material and geometric non-linearity effect simultaneously.
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17.3 ANALYSIS OF MATERIAL NON-LINEAR PROBLEMS

Asexplained earlier material non-linearity isdueto non-linear constitutive matrix [D]. The material properties
are to be evaluated experimentally. For many materials non-linear stress strain curves have been obtained
experimentally by conducting uniaxial tests. These results are enough to carry out non linear analysis of
homogeneous materials. For any material, if non-linear analysisisto be carried out, experimental results are
necessary to find non-linear relations of all the termsin general constitutive matrix. This has become amajor
constraint in achieving non-linear solutionsfor al materials. Inthisarticle only non-linear analysisfor isotropic
materialsis explained which can be easily extended to other materialsalso if the non-linear material properties
are known.

Consider a material with typical non-linear stress strain and corresponding load deformation curve as
shown in Fig. 17.3. When a structure is loaded stresses are different at different points. Hence Young's
Modulusisdifferent from point to point. For finite element analysis asingle value is assumed for an element
and element to element the value may be different. Since stiffness matrix is assembled element by element,
the procedure of accounting non-linearity isexplained below for aelement stiffness matrix. For simplicity the
letter ‘€ is dropped from all notations. The following three methods are available in literature for handling
material non-linear problems:

1. Incremental procedure
2. lterative procedure and
3. Mixed procedure

Load —»
Stress ——»

Extension —» Strain ——»

Fig. 17.3

1. Incremental Procedure

In this method load is applied in a number of equal increments. It may be in 8 to 10 increments. More the
increments better isthe solution. For each incremented |oad the stiffness equation is assembled and incremented

displacements are found. Fig. 17.4 shows the procedure. At the time of considering ith increment load A F, ,

we are at point A on the load deflection curve. At this stage we know the stress level corresponding to i-1th
iteration. Corresponding to this stress level, we can pickup material properties and assemble the stiffness

matrix [k _,]. Usually tangent modulusis considered. Incremented load A F; , can be written as
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[ki-1] {88,} = {oFR} .(17.2)

FA

(Fo. Do) ‘o>

Fig. 17.4 Incremental procedure

Solving the above linear equation we get the incremented deflections AJi . Then we reach the next point
B, at which

3, =0y + ZAéj and ..(17.2)

F=F+ ZAF. .(17.3)

In the above equations §, and F, correspond to initial deflections and loads. Usually these values are
zeroin many problems. Thuswith piecewise linearization of the material property we move from one point to
another point till full load is considered.

Midpoint Runge-Kutta I ncremental Procedure

The above basic incremental scheme may be improved to get better results by using midpoint Runge-Kutta
incremental procedure. This scheme is shown in Fig. 17.5. In this, point A corresponds to the end of (i-1)th
incremental stage. We are seeking solution for it"incremental load AR, . In basic schemewe reach point B and
select displacements corresponding to B' as displacement. In mid point Runge-Kutta method we first pick

up point C which correspond to increment load A?F' by basic scheme. Corresponding to the stress level at

this point material properties are picked up and stiffness matrix k. _, isfound. Then we go back to point A
2

and calculate incremental displacement for the load AF; using stiffness matrix k._, . Thisleadsto point E
and displacements corresponding to E' . From the scheme it may be easily seen that Fesult obtained is better.
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However it involves additional computational effort to find k; -1 . This scheme is better than having the load

increment and using basic method which would have given point D and D' asthe solution.

Load
—

q; qim Ui
Basic Modified

Displacements ——»

Fig. 17.5 Mid point Runge-Kutta incremental procedure

2. lterative Procedure

This procedure is devel oped on the concept of finding load corresponding to initial strains. Hence let us see
how to calculate initial load corresponding to initial stressin amaterial.

Let [0, beinitial strainand 0O thefinal strain (ref. Fig. 17.6). Hence elastic strain is given by

Q

Stress —»

< > Strain —»
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{se} ={e} - {e0} (17.3)
Let Ad bethevirtual displacement vector. Then
Ae =[B]{Ad} (17.4)
and stresses are,
{o} = [D]{se} =[D]({e} - {e0}) .(17.5)
0 Work done by internal stresses,
flae} [o] av

= {125} [8]"[D] ({e} - {eo}) v
= {ao}" {§[8]" [D]{e} - fI[B] [D]{e}} av
= {as}" {§[&]" [D][B]{e} - §[B]" [D}{ &0} } av .(17.6)

work done by external 1oads
={ns}" {F} (17.7)

Equating work done by internal stresses to work done by external loads we get,
T T
J[8]" [c][Bl{s}av - F + §[B]" [D]{&o} oV
e, [K]{o} =F + R,

where Fo= §[8]"[D]{e0} av .(178)
This term may be called as load corresponding to initial strain. This concept of finding initial load
corresponding to initial strain isused in iterative procedure as explained below:
Let F, beinitial load and §, beinitia strain. Total load to be applied be F (ref. Fig. 17.7)

Using tangent modulus initial value of material can be found and stiffness matrix k assembled. Let the
displacement obtained for full loading F be Ad, . Ad,; isobtained by the stiffness equation

[ko]{ad:} = {F} .(17.9)
In the scheme shown in Fig. 17.7 it corresponding to the finding A
0o oF A ..(17.10)

Using equation 17.8, we can find the equivalent load F_, corresponding to displacement J, , as

Fu= §[B]" [D]{e.} = (8] [D][Bl{5:} ~(1711)
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cbo___ A A
_____ 1 ____=_
Fa | |B:
[ 1 [
ko | [
tap--as
k] | |
©
S [ [
.}
[ [
[ |
[ [
[ [
1 1
(Fo. Og) 0y 0,

— Displacement
Fig. 17.7 lterative procedure
Then we find difference between total load and F_, calculated. Corresponding to F_ we get the point B,.

The unbalanced force is F-F_. At point B tangent modulus may be obtained from material property and
calculation may bemadewith [k ] stiffness, to reach point A, for the applied load F-F . Then find the equivaent

2
load F_, corresponding to 9, = 9, + Z AJ. The procedure is repeated till unbalanced force is negligible.
=1

A modified iterative procedure by Oden[3], isshown schematically in Fig. 17.8. In thismethod throughout
stiffness matrix k ; is used. This may take moreiterationsto reach final value, but surely there is considerable
saving in time since the repeated calculation of stiffness matrix is avoided.

(Fo. Do) 0, 0, Us 0

Fig. 17.8 Modified iterative procedure
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3. Mixed Procedure

The mixture of iterative and incremental produce may be used to get better accuracy. In thismethod total load
isdivided into anumber of incremental load. For each load increment, iterative procedure is employed to get
the displacement. By this method accuracy isimproved at the cost of computation time.

17.4 ANALYSIS OF GEOMERTIC NON-LINEAR PROBLEMS

So far we analysed the structures assuming that there is no appreciable change in the geometry of the structure
after loading. Hence the transformation matrix used to connect local and global values remained constant
throughout and the following relations could be used:

{64} =[L]" {3} (17.12)
{ko} = [L]" [ke] {L} and (17.13)
{Fo} = [L]" {Fe} (17.14)

where, subscript g refers to global values and | refers to local values. [L] is the rotation (transformation)
matrix.

In cable structures, the deflections are large. Hence change of geometry with loads are not negligible.
There are attempts to study the effect of changes in geometry on structures like shells also. Consider a bar
element shown in Fig. 17.9. The line 1-2 shows initial position. After loading the element takes position

1 - 2' . Hence its inclination to global x-axis changes from 8 to 0 + A@. Hence the rotation matrix L
changes. Thus L is not constant throughout but it is a function of displacement. We can represent this by

writing [L] = {L {6}] . Hencethe stiffness matrix varieswith displacements. Thistype of non-linear problems

may be handled by incremental iterative or mixed method similar to handling material non-linearity problems.

y
A u,
=X,
20
VZ
ul
— O+ D
10 =Xl
v, 2
O
1

Fig. 17.9 Geometric non-linearity
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1. Incremental Procedure

If the load isincremented from {F } to {Fg + AFQ} , the equation 17.14 can be written as

Fo} +{0R = ([LI+ ) ({R}+ {aR))

= [L]T {RY+ [L]T [aR} +[aL] {R] +[oL] {aR}
Neglecting the small quantity of higher order, the above equation will be

[Fo] = {8Fg} =[] {R} +[L] {aR} +[aL] {R}
since [Fg] =[L]" {R ], the above equation reduces to

{aFg} =[] {oR} +[aL]" {R} .(17.15)

From the stiffness equation, we know
T
[L] {oR}= [kg] {Aég}
0 Equation 17.15 reduces to

{aFy} =[ky {255} +[aL] {R} ..(17.16)

In the above equation, the term [AL]T [Fe] representsthe change in stiffness equation due to change in
the geometry. Let us consider this term further

[a] (R} = i{ﬁ 1 1AL, (17.17)
_o{L}, _o{L};
but AL = 9(39) (ndg) = 3(39) ¢

..(17.18)

_|o{Ll ofLy  o{L}
- 9(3,), 9(35), " 0{8,}

0 [a" {Rk Z [G1{ad:}

Substituting it in equation 17.16, we get

{F,} =[ko]{n0,} + Z(Fe)i [G]{as,}
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= kg AS, + (i(':e)i [Gi]{Mg}]

1=1

= [ky + ko] {85} .(17.19)

where kg = i(Fe)i [G]

Since we normally talk about global valuesin the final analysis, for simplicity we can drop subscript ‘g’
and write equation 17.19 as

{aF} = ([k] + [ke]) {23} (17.20)
From ith stage, if we want to proceed to i + 1nth stage, the equation 17.20 is
([K] + [k]), {86141} = AR . (17.21)

Thusto get additional deflections due to geometric non-linearity we need stiffness matrices [k] and [k ]
at the beginning of an increment. Hence evaluation effort required is more. However it may be noted that to
find [k_] thereisno need to evaluate the stiffness matrix afresh. We need only modificationsto transformation
matrix [L].

2. lterative Procedure

This method is straight forward. For the initial geometry, the transformation matrix is assembled. Using this
we find,

[ko] = [ L] [k ][ o] (17.22)
[Fo] = [Lo]'[R] - (17.23)

Then after solving stiffness equation,
[ko]{01} =[Fo] .(17.24)

weget § valuesof 1st stage. Using these displacements, the new coordinates of the nodes are determined. For
the new geometry the above process is repeated to get displacements §, of second stage. The process is

repeated until the displacements no longer change significantly. Though the processissimple, it haslimitations
of the iterative techniquesi.e. convergenceis slow. It is time consuming.

3. Mixed Procedure

Instead of applying total load in each iteration, if we apply load in the increments and for every incremented
load carryout the iterative procedure, better results may be obtained. It involves ot of computational effort.



328  Finite Element Analysis

17.5 ANALYSIS OF BOTH MATERIAL AND
GEOMETRIC NON-LINEAR PROBLEMS

Researchers have attempted some problems, treating them as both material and geometric non-linear problems.
This gives real behaviour of structures under load. Oden [3] has given a generalized mathematical basis for
incremental and iterative procedure and has given a exhaustive list of references on non-linear analysis

QUESTIONS

1. Explain the different types of non-linearities encountered in structural analysis
Explain incremental procedure to handle material non-linear problems.

3. Explain mid point Runge-Kutta incremental sheme and discuss its advantages and disadvantages
over the incremental procedure.

4. Explaniterative procedure and modified iterative procedurefor the analysis of material non-linearity
problems.

5. Explaintheiterative procedure of handling geometric non-linearity problemsin structural mechanics.

N
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Standard Packages
and Their Features

18.1 INTRODUCTION

Finite element analysis involves lot of humerical calculations. Hence it is not a suitable method for hand
calculations. Themethod isideally suited for computer applicationsand has devel oped along with devel opments
in computer technology. The development of finite element programs is time consuming. Many universities
and software companies have spent several man hours to develop general purpose finite element analysis
packages. The packages are continuously being updated by incorporating more and more elements and adding
new moduleslike non-linear analysis, dynamic analysis, optimization techniques. The cost of devel opment of
packagesisvery high. Hencetheir cost ishigh. In 1996, the cost of NASTRAN packagewasashigh asRs.4.5
lakhs. Asthe number of users are increasing, the cost of these packages is continuously coming down. Now
the same package with additional features are available at around Rs.1.50 lakhs. In this chapter the list of
standard finite element packages is presented and then the structure of finite element package explained. The
need for preand post processorsis pointed out and afeatures of these processorsis presented. Finally desirable
features of general purpose packagesis listed.

18.2 COMMERCIALLY AVAILABLE STANDARD PACKAGES
Thefollowing are some of the general purpose finite element analysis packages now available in the market.

1. Structural Design Language (Integrated Civil Engineering System, M.I.T, USA) STRUDEL

2. NASA Structural Analysis (U.S. National Aeronautical and Space Administration) NASTRAN.
Now thishas split into five separate groups and each group is continuously improving the package.
CSA NASTRAN and MSC NASTRAN are popular in India.

3. Non-linear Incremental Structural Analysis(devel oped by E Ramm, Institute of Biostatic University
of Stuttgart, W Germany) NISA.

4. Engineering Analysis System (Swanson Analysis System Inc.) ANSY S.
5. Structural Analysis Program (developed by EL. Wilson, University of California, USA) SAP.

Continuous up-gradations of all the packages is going on in the form of

(8 Increasing the variety of elements
(b) Provision for using different types of elements at atime
(c) Addition of dynamic analysis
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(d) Addition of non-linear analysis

(e) Addition of optimizations

(f) Developing more and more users friendly programs (pre and post processors) to handle input data
and output informations.

18.3 STRUCTURE OF A FINITE ELEMENT ANALYSIS PROGRAM

The program startswith lot of INPUT information to define the problem. Then the datagiven is processed and
required result is printed out. Finite Element Analysis Program using a particular element is explained below
and the flow chart is presented.

Input Information

The various input required to define a problem may be grouped into the following:
1. Geometric Data:

(8) General information like total number of elements, total number of nodal points, type of
element (number of nodes, degrees of freedom for each node), are to be supplied.

(b) Coordinates of each node to be supplied or generated.
(c) For each element nodal connectivity is to be supplied.

2. Load Dataisto be given. It consists of total types of loads and for each load its magnitude, point
of application (coordinate or line or surface of application) etc.

3. Material Propertiesto be supplied consists of total number of materials used, for each material
required material property like Young's Moduli, Poisson’sratio etc. and material number of each
element.

4. Nextinput requiredisabout total number of boundary conditionsand for each boundary condition
specified displacements.

5. Number of Gaussian pointsto be used and for each Gaussian point weight function and coordinates
inlocal system should be supplied.

Processing

Data supplied isto be processed to complete the analysis. It startswith initializing global stiffness matrix and
load matrix. Then element loop is entered to assemble element stiffness matrix. Element stiffness matrix is
initialized. When numerical integration isused, there should be Gauss point |oop insidethe element. Contribution
of each Gauss point to stiffness matrix isto be found. It needs entering shape function subroutine to get shape
function, and shape function derivatives. Assemble Jacobian matrix Jacobian inverse and determinants are
found. [B] matrix is assembled and the then contribution of the Gauss point i.e. [B]T [D][B]| J|dé dn type
terms are found and added to the existing values of element stiffness matrix. When Gauss loop is completed
we get element stiffness matrix. With the help of nodal connectivity details, the position of each value of
element stiffness matrix in global matrix is identified and added to existing value. When element loop is
completed global stiffness matrix isavailable.

Using load details nodal loads are to be assembled. Usually first nodal valuesareinitialized. Then one by
one load case is taken up to get final load vector {F}.

The next step in processing is to impose the boundary conditions. Penalty method is used to impose the
boundary conditions.
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Now, the stiffness equations are ready. Standard solution package is used to solve the equation to get
nodal variables. Using these nodal variables at Gauss point of each element, strains and stresses are found. If
principal stresses and strains are required they may be assembled. Any other required stress resultant may be
assembl ed.

Output

Various values calcul ated after the analysis, may be printed out.

The structure of the finite element analysis program is shown by flow chart in Fig. 18.1. The flow chart
isfor asingle element. Suitable changes areto be madeto incorporate various elements and for the cal cul ations
other than static linear analysis.

18.4 PRE AND POST PROCESSORS

A practical problem to be solved by finite element analysis needs hundreds of elements and nodal degree of
freedom may exceed oven 1000. Hence the preparation of data, such as numbering nodes, generating nodal
coordinates, supplying nodal connectivity, load and material information, specifying boundary conditions, is
too lengthy process. It needs considerable efforts and islaborious. If handled manually by looking at INPUT
statements, possibility of errorscreeping in are discouraging factors. Hence many softwares have been devel oped
to handle the data graphically and display it for the verification. Such softwares developed exclusively to
assist in generating finite element analysis INPUT are known as Pre Processor s of FEA packages. They use
Graphic User Interfaces (GUI) for the following:

1. Generate finite element mesh.

2. Number the elements automatically.

3. Number the nodes automatically so as to keep band width least.

4. Generate nodal coordinates, using the values supplied at salient points.

5. Develop nodal connectivity details.

6. Display the standard tablesto specify various loads and load informations.

7. Display the tables to specify material numbers and material properties, boundary conditions and
other details.

The provisionsare madeto select only part of the structure to check the INPUT dataand alter if necessary.
HELP commands are available for the users. PRINT commands are also available to print out data for
documentation.

Display I11 / 1V, FEMAP and PATRON are some of the commercially available preprocessor. Upgraded
visions are coming up regularly to make preprocessor as user friendly as possible.

The preprocessors devel op datafile required by main FEA program, which is known as Processors. The
processors use the data file, analyses and stores the final results.

The output of a FEA consist of nodal displacements, the calculated values of stresses, strains, moments
etc. in each element at all Gauss points. The output values calculated arein all global coordinated directions
and also in principal directions. It is time consuming to go through entire output file before picking up the
required one. Hence the user friendly, Graphic users Interface software have been developed which may be
named as Post Processors. Normally pre and post processors are clubbed and commercial packages are
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(INPUT: Geometric, Load, Material, boundary conditions and Gaussian Integration information )

[
| Initialise [k] and {F} |

IGAUS =1

IGAUS = IGAUS + 1

No

Assemble [7|],1 J
[B], [D]
(81" (D181, |4l
k.= k. + [B]"[D] [B] |J]

IS

NEL=NEL+1

IGAUS > NGAUS?

Yes
I

Place [kip [] k
I
NEL=NEL +1

»

No

NEL > NE?

Yes
I

Assemble load vector {}F
Impose boundary conditions
Solve equations

I
NEI =1

No

1
Make additional calculations
Print out result
[

NEL=NEL +1

‘

Yes

Fig. 18.1  Flow chart
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developed. With the help of post processor, making use of various windows users can:

1
2.
3.
4.

Pick up absolute maximum stress resultants

Plot the graph of stresses along a selected cross section
Plot stress resultant or strain contours.

Pick up values for specified element or point.

There is competition among software developers to make pre and post processors as users friendly as

possible.

18.5 DESIRABLE FEATURES OF FEA PACKAGES
The desirable features of agood FEA package are listed below:

1
2.

10.

The package should be supported by an excellent pre and post processor.

Theelement library should incorporate all typesof elementslike 1D, 2D, 3D elements, plate elements,
shell elements.

The package should have acapability to handle different types of |oadslike concentrated, uniformly
distributed, uniformly varying, internal and external pressures, centrifugal forces, moving loads,
temperatures stresses.

It should be possible to impose boundary conditions of all types the user may encounter in his
problems.

Thelimitation on degrees of freedom that can be handled on aspecified hardware should be ashigh
aspossible. Thisis possibleif the processor makes use of banded nature and symmetry in stiffness
matrix. Another point where processor can be made efficient is by avoiding repeated calculations

of strains (:i; BdV) and stresses (j; DBdV) which are assembled while assembling the stiffness

matrix. In efficient program these values are written on hard disc element by element while
assembling stiffness matrix and read while assembling strains and stresses.

The package should include various features like dynamic analysis, buckling analysis and non-
linear analysis.

If design is also incorporated in the package, there should be choice for the user to select required
codal provisionslike Indian standard practice, British codes, American codes etc.

User may even expect an excellent optimizer in the package.

The package should be economical and there should be choice for user to pick up the package to
suit his requirement and budget.

For large users multi users network version licenses should be available.

NISA has broughout NISA / CIVIL which isusers friendly for civil engineers and gives facility for the
analysis and design of various R.C.C and steel designs. ANSY S has workshop supplement which specializes
on analysis and design of mechanical components. All established software developers are coming out with
latest version of finite element packages with more features and more user friendly versionsto suit various users.

1
2.

QUESTIONS

Briefly explain the structure of afinite element analysis program.
Name some of the standard FEA packages.
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3. Write short note on pre and post processors.
4. List the desirable features of FEA packages.
5. Write short note on commercially available FEA packages.
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